
6.864, Fall 2005: Problem Set 4
Total points: 160 regular points

Due date: 5pm, 15 November 2005
Late policy: 5 points off for every day late, 0 points if handed in after 5pm on 19 November 2005

Question 1 (15 points)

Describe an algorithm for hierarchical topic segmentation of a text. In contrast to linear segmentation
algorithms we studied in class, your algorithm should not only find topic changes, but it has to find nesting
relations among different topics. Specify the parameters of your algorithm, and suggest a method for their
estimation.

Question 2 (15 points)

The min-cut segmentation algorithm presented in class computes text segmentation based on changes in
lexical distribution. We would like to refine this algorithm by taking into account the length of computed
segments. The function cost(l) captures the penalty associated with a segment of length l — the assumption
is that some values of segment length are more likely than others.

•	 There are several ways to specify cost(l). Provide a definition for cost(l), and explain your choice.

•	 Explain how to modify the definition of the K-way partitioning cost to take the length penalty cost(l)
into account. Similarly to the original definition, the modified partitioning cost has to be defined
recursively.

Question 3 (15 points)

We are going to come up with a modified version of the Viterbi algorithm for trigram taggers. Assume
that the input to the Viterbi algorithm is a word sequence w1 . . . wn. For each word in the vocabulary, we
have a tag dictionary T (w) that lists the tags t such that P (w|t) > 0. Take K to be a constant such that
|T (w)| � K for all w. Give pseudo-code for a version of the Viterbi algorithm that runs in O(nK 3) time
where n is the length of the input sentence.

Question 4 (15 points)

In lecture we saw how the Ratnaparkhi parser maps a parse tree to a sequence of decisions in a history-based
model. For example, see slide 70 of lecture 10 for the sequence of decisions associated with the parse tree
on slide 49 of the lecture.

Question: Show the sequence of decisions that is used to represent the following parse tree:

S

NP	 VP

NP PP V PP

D N IN NP slept IN NP

the dog in D N under D N

the park a tree

Question 5 (100 points)

In this programming question, we are going to build a trigram HMM tagger. The joint probability of a word
sequence w1, w2, . . . wn and a tag sequence t1, t2, . . . , tn is defined as

P (w1 . . . wn, t1 . . . tn) = P (#END|tn−2, tn−1)
n �

i=1

P (ti|ti−2, ti−1)
n �

i=1

P (wi|ti)

The Viterbi algorithm searches for

arg max P (w1 . . . wn, t1 . . . tn)
t1...tn

for a given word sequence w1 . . . wn.

In the file poscounts.gz you will find counts that will allow you to estimate the parameters of the model.
There are 4 types of counts in this file:

•	 Lines where the second token is DENOM, for example

124953 DENOM NN

These are the counts used in the denominators of any maximum likelihood estimates in the model.
For example, in this case the count of the unigram tag NN is 124952.

•	 Lines where the second token is NUMER, for example

32545 NUMER NNP NNP

These are the counts used in the numerators of any maximum likelihood estimates in the model. For
example, in this case the count of the tag bigram NNP NNP is 32545.

•	 Lines where the second token is WORDTAG1, for example

38612 WORDTAG1 DT the

These are counts used in the numerators of maximum-likelihood estimates of P (wi|ti). For example,
the word the is seen tagged 38612 times as DT in this case.

•	 Lines where the second token is WORDTAG2, for example

77079 WORDTAG2 DT

These are counts used in the denominators of maximum-likelihood estimates of P (wi|ti). For exam
ple, the tag DT is seen 77079 times, according to this count.

Some further notes:

•	 Each sentence has t
−2 = #S1, t

−1 = #S2, and tn+1 = #END. Hence some of the n-grams will
include these symbols.

•	 Words occurring less than 5 times in training data have been mapped to the word token UNKA.

Part 1: Estimating P (w|t) parameters. You should write a function that returns P (w|t) for a particular
word w and tag t, where

Count(w, t)
P (w|t) =

Count(t)

The counts in this case are taken from the WORDTAG1 and WORDTAG2 lines in poscounts.gz.

Part 2: Estimating P (ti|ti−2, ti−1) parameters. You should write a function that returns P (ti|ti−2, t −1)
for a particular tag trigram ti−2, ti−1, ti. This estimate should be defined as follows:

If Countd(ti−2, ti−1) > 0

Return 1 PML(ti|ti−2, ti−1) + 1 PML(ti|ti−1) + 1 PML(ti)3	 3 3

Else if Countd(ti−1) > 0

Return 1 PML(ti|ti−1) + 1 PML(ti)2	 2

Else

Return PML(ti)

Here Countd are the denominator counts (lines with DENOM in the poscounts.gz file). The PML

estimates are defined as
Countn(ti−2, ti−1, ti)

PML(ti|ti−1, ti−2) =
Countd(ti−2, ti−1)

Countn(ti−1, ti)
PML(ti|ti−1) =

Countd(ti−1)

Countn(ti)
PML(ti) =

Countd()

where Countn are the counts from the NUMER lines in the poscounts.gz file. Note that you can get
Countd() from the following line of the file:

950563 DENOM BLANK

Note: make sure your code has the following functionality. To test the code it should be possible to
read in a file, line by line, that contains one tag trigram per line. For example, the file might contain

NN NN DT
NN DT NN

As output, the code should write the probability for each trigram in turn, for example

0.054
0.032

Part 3: Implementing the Viterbi algorithm

You should now implement a version of the Viterbi algorithm, which searches for the most probable se
quence of tags under the model.

Note: make sure your code has the following functionality. To test the code it should be possible to
read in a file, line by line, that contains one sentence per line. To see a test file, look at

wsj.19-21.test

For each line, your code should

(1) print the most likely sequence of tags under the model

(2) print the log-probability of this sequence of tags

Note: The sentences in this input file already have infrequent words replaced with the UNKA token

One important note about the efficiency of your implementation: for each word in the vocabulary, you
should compile a “tag dictionary” that lists the set of tags that have been seen at least once with that word.
You should use this fact to make a more efficient algorithm (see question 3 of this problem set).

