
1

March 4, 2005 BST-1

Bluespec Tutorial: Rule
Scheduling and Synthesis

Michael Pellauer
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

March 4, 2005 BST-2

Improving performance via
scheduling

Latency and bandwidth can be improved by
performing more operations in each clock cycle

That is, by firing more rules per cycle

Bluespec schedules all applicable rules in a cycle
to execute, except when there are resource
conflicts

Therefore: Improving performance is often
about resolving conflicts found by the scheduler

2

March 4, 2005 BST-3

Viewing the schedule
The command-line flag -show-schedule can
be used to dump the schedule
Three groups of information:

method scheduling information

rule scheduling information

the static execution order of rules and methods

March 4, 2005 BST-4

Method scheduling info

For each method, there is an entry
like this:

Method: imem_get
Ready signal: 1
Conflict-free: dmem_get, dmem_put, start, done
Sequenced before: imem_put
Conflicts: imem_get

name of the method

expression for the ready signal
(1 for always ready)

conflict relationships
with other methods

3

March 4, 2005 BST-5

Types of conflicts
Conflict-free

Any methods which can execute in the same clock
cycle as the current method, in any execution order

Sequenced before
Any methods which can execute in the same clock
cycle, but only if they sequence before the current
method in the execution order

Sequenced after
Any methods which can execute in the same clock
cycle, but only if they sequence after the current
method

Conflicts
Any methods which cannot execute in the same clock
cycle as this method

March 4, 2005 BST-6

Rule scheduling info

For each rule, there is an entry like
this:

Rule: fetch
Predicate: the_bf.i_notFull_ && the_started.get
Blocking rules: imem_put, start

name of the rule

expression for the rule’s condition

more urgent rules which can
block the execution of this rule

(more on urgency later)

4

March 4, 2005 BST-7

Static execution order
When multiple rules execute in a single
clock cycle, they must appear to
execute in sequence

This execution sequence is fixed at
compile-time. All rule conditions are
evaluated in this order during every
clock cycle

The final part of the schedule output is
this order

March 4, 2005 BST-8

Urgency
The compiler performs aggressive
analysis of rule boolean conditions and
is therefore aware of mutual exclusion
(i.e., when it is impossible for two rules
to be enabled simultaneously)

Thus, typically the compiler does not often
need to choose between competing rules
The compiler produces informational
messages about scheduling choices only
where necessary

5

March 4, 2005 BST-9

Viewing conflict information
The -show-schedule flag will inform you that
a rule is blocked by a conflicting rule

The output won’t show you why the rules conflict

The output will show you that one rule was
sequenced before another rule

The output won’t tell you whether the other order
was not possible due to a conflict

For conflict information,
use the -show-rule-rel flag

See User Guide section 8.2.2

March 4, 2005 BST-10

Scheduling conflicting rules

When two rules conflict on a shared
resource, they cannot both execute in
the same clock
The compiler produces logic that
ensures that, when both rules are
enabled, only one will fire

Which one?
The compiler chooses

(and informs you, during compilation)
The “descending_urgency” attribute allows
the designer to control the choice

6

March 4, 2005 BST-11

Demo Example 2:
Concurrent Updates

Process 0 increments register x;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

0 1 2
x y

+1 -1 +1 -1

rule proc2 (cond2);
y <= y – 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc0 (cond0);
x <= x + 1;

endrule

(* descending_urgency = “proc2, proc1, proc0” *)

show what happens under different urgency annotations

March 4, 2005 BST-12

Example2.bsv Demo

Compile (bsc
Example2.bsv)

Generate Verilog (bsc -verilog -g mkExample2
Example2.bsv)

Run in vcs (See
lab3 handout)

Examine WILL_FIRE
-keep-fires (Examine CAN_FIRE)
-show-schedule

-show-rule-rel
(See manual)

Changing the predicates to True?

7

March 4, 2005 BST-13

Conditionals and rule-spliting
In Rule Semantics this rule:

Is equivalent to the following two rules:

rule r1 (p1);
if (q1) f.enq(x);
else g.enq(y);

endrule

rule r1a (p1 && q1);
f.enq(x);

endrule

rule r1b (p1 && ! q1);
g.enq(y);

endrule

but not quite because

of th
e co

mpiler tr
eats

implicit
 co

nditio
ns

conservatively

rule r1 won’t fi
re

unless b
oth f a

nf g

queues are not fu
ll!

March 4, 2005 BST-14

Demo rule splitting:
Example 3
(* descending_urgency = "r1, r2" *)
// Moving packets from input FIFO i1
rule r1;

Tin x = i1.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i1.deq();
if (interesting(x)) c <= c + 1;

endrule

// Moving packets from input FIFO i2
rule r2;

Tin x = i2.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i2.deq();
if (interesting(x)) c <= c + 1;

endrule

D
et

er
m

in
e

Q
u
eu

e
D

et
er

m
in

e
Q

u
eu

e

+
1

Count
certain packets

This e
xample won’t

work properly

without ru
le sp

litin
g

8

March 4, 2005 BST-15

Example3.bsv Demo

Compiling
Examining FIFO signals, enables
Examining conservative conditions

What are the predicates for R1, R2?
-aggressive-conditions

What are the predicates now?
-expand-if

Why can certain generated rules never
fire?

March 4, 2005 BST-16

Summary of
performance tuning

If the schedule of rules is not as you expected or desire,
we have seen several ways to adjust the schedule for
improved performance:

Remove rule conflicts by splitting rules
Change rule urgency

Sometimes, an urgency warning or a conflict can be due
to a mistake or oversight by the designer

A rule may accidentally include an action which shouldn’t
be there
A rule may accidentally write to the wrong state element
A rule predicate might be missing an expression which
would make the rule mutually exclusive with a conflicting
rule

9

March 4, 2005 BST-17

Rule attributes

We have already seen the
descending_urgency attribute on rules

There are two other useful attributes which
can be applied to rules:
fire_when_enabled
no_implicit_conditions

These attributes are assertions about the rule
which bsc verifies
Does not change generated RTL

March 4, 2005 BST-18

fire_when_enabled

Asserts that the rule will always execute when
its condition is applicable

i.e., there are no (more urgent) conflicting rules

Can be used to guarantee that a rule will
handle some condition, by guaranteeing that
the rule fires when the condition arises

Examples:
To handle an unbuffered input on the interface

particularly in a time-based or synchronous module and
particularly when the interface is "always_enabled“

To handle transient situations e.g., interrupts

10

March 4, 2005 BST-19

no_implicit_conditions

Asserts that rule actions do not
introduce any implicit conditions

That the rule’s condition is exactly as the
user has written, and nothing more

Can be combined with the attribute
fire_when_enabled to guarantee that
the rule will fire when its explicit
condition is true

March 4, 2005 BST-20

Matching to external interfaces

... the external interface may not
use the same RDY/EN protocol as
Bluespec; interface attributes are
available to handle this situation ...

11

March 4, 2005 BST-21

Interface attributes
Useful attributes

always_ready
always_enabled

Attributes attach to a module
They apply to the interface provided by
that module – when the module is
synthesized
The attributes apply to all methods in
the interface

March 4, 2005 BST-22

always_ready

This attribute has two effects:
Asserts that the ready signal for all
methods is True

It is an error if the tool cannot prove this

Removes the associated port in the
generated RTL module

Any users of the module will assume a
value of True for the ready signals
No RDY_method signal are found

12

March 4, 2005 BST-23

always_enabled

Ties to True the enable signal for all action
methods

If the method cannot be executed on every cycle
(due to internal conflicts), bsc reports an error

Removes the associated port in the generated
RTL module

Any user of the module must execute the method on
every cycle, or it is an error

E.g. EN_method is assumed True and removed

March 4, 2005 BST-24

Interface attributes

These attributes are used to match
externally-specified port lists which
do not have RDY and EN wires
Or for a synchronous module
which should receive input on
every cycle

13

March 4, 2005 BST-25

Synchronous Binary Multiplier
Interface
interface Design_IFC;

method Action setInput (Bit#(16) x,
Bit#(16) y, Bool start);

method Bit#(32) prod();
method Bool ready();

endinterface : Design_IFC

(* always_ready,always_enabled *)
module mkDesign (Design_IFC);

module mkDesign(clk,
reset,
setInput_x,
setInput_y,
setInput_start,
prod,
ready);

March 4, 2005 BST-26

module mkMult1 (Mult_ifc);
Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg (0);
Reg#(Tin) r <- mkReg (0);

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule: cycle

method Action start (Tin d_init, Tin r_init) if (r == 0);
d <= zeroExtend(d_init);
r <= r_init; product <= 0;

endmethod

method Tout result () if (r == 0);
return product;

endmethod
endmodule: mkMult1

Demo Example 1:

14

March 4, 2005 BST-27

Test bench for Example 1
module mkTest (Empty);
// arrays a, b contain the numbers to be multiplied and
array ab contains the correct answers.

Mult_ifc m <- mkMult1();
Reg#(Bool) busy <- mkReg(False);
Reg#(int) i <- mkReg(0); Reg#(int) j <- mkReg(0);

rule data_in (!busy);
m.start (a[i], b[i]);
i <= i+1; busy <= True;

endrule

rule data_out (busy);
Tout x = m.result();
$display (“%0.h X %0.h = %0.h Status: %0.d”,

a[j], b[j], x, x==ab[j]);
j <= j+1; busy <= False;

endrule
endmodule: mkTest

March 4, 2005 BST-28

Example1.bsv Demo

Compiling with -u
The (* synthesize *) pragma

Method RDY and EN
Making the multiplier synchronous
(* always_ready *)

Altering the testbench
(* always_enabled *)

Examining the final verilog ports

