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6.895 Essential Coding Theory	 October 4, 2004 

Lecture 8 
Lecturer: Madhu Sudan	 Scribe: Anindya C. Patthak 

1	 Overview 

In this lecture we will cover List Decoding of Reed-Solomon Codes. 

2	 List Decoding of Reed-Solomon Codes: Combinatorial Per

spective 

In the last lecture we have seen the combinatorial version of list decoding. Recall that we are given a 
code of distance d and we would like to correct more than d/2 errors. We argued that unique decoding 
is not possible. Therefore we decided on outputting a small list of codewords that has good agreement 
with the received word. We established the following combinatorial version of list decoding that ensured 
existence of a polynomial size list provided the agreement is suitably large. 

Theorem 1 (Combinatorial Version) Let C be an (n, k, d) error1 correcting code over an alphabet � of 
size q. Then given any ball B(x, r), where x ∃ �n and r = n − (n − d)n, the set C ≥ B(x, r) has size 
at most poly(n), more specifically n2 . 

Definition 2 Given an [n, k, d]q code C over an alphabet �, we say that C is (e, �)-list decodable code, 
if for every x ∃ �n , B(x, e) ≥ C has size at most �. 

The following corollary is then immediate from Theorem 1. 

Corollary 3 (List Decoding of Reed-Solomon Codes:Combinatorial Version) An [n, k, n − k + 1]q 

RS code is (n − n(k − 1), n2)-list decodable. 

3	 List Decoding of Reed-Solomon Codes: Algorithmic Perspec

tive 

The algorithmic challenge of list decoding is the following: 

Given an (e, �)-list decodable code C and any received word y = , output the set B(y, e) ≥ C.∩y1, · · · , yn√
For an easier exposition, we give the following definition. 

Definition 4 Given x, y ∃ Fn 
q , we define the agreement between x and y to be 

def 
agreement(x, y) = |{i|xi = yi}|. 

With this definition, we reformulate our list-decoding task the following way: 

Given any (e, �)-list decodable code C and a received word y = , output the set ∩y1, · · · , yn√
agreement(x, y) � t}, where we set t = n − e.{x ∃ C | 

We now describe an algorithm to list-decode RS codes from (k + 1)
∈

n + 1 agreements. With some 
parameter optimization, the same algorithm can be used to list-decode RS codes from agreements as 
low as 2

∈
kn + 1. It is possible to improve our result to correct more errors. There is an algorithm due 

to Guruswami and Sudan that can list-decode RS codes from agreement as small as 
∈

kn + 1. However, 
that requires more sophisticated arguments and therefore we skip. 

1 The bound on list size does not depend on the dimension k. 
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Figure 1: Interpretation of data through rational function 

3.1 Problem Formulation 

We quickly recall the problem we are considering. 

Problem: List Decoding of Reed-Solomon codes 
Input: F, n, k, t; �1, · · · , �n ∃ F, a received vector n ∃ Fn .∩y1, · · · , y √
Goal: Find all polynomials p of degree < k s.t. p(�i) = yi for at least t values of i. 

As mentioned earlier our goal today is to find an algorithm for t > (k + 1)
∈

n. 
Recall that in Welch-Berlekamp Decoder we carry out the following steps: 

Welch-Berlekamp Decoder 

1. Find polynomials (N, E) s.t. N(�i)/E(�i) = yi holds for all i ∃ [n] provided E(�i) = 0 ≡
2. Output N(x)/E(x) 

Alternatively we may think of finding a rational function “to explain” the data. We will make this idea 
precise soon. Recall that univariate rational functions are functions that are fraction of two univariate 
polynomials. They have a form f(x)/g(x), where f(x) and g(x) are univariate polynomials. They also 
need to satisfy the requirement that whenever g(x) = 0 implies f(x) = 0. In another words the zero 
set of polynomial g(x) is a subset of the zero set of polynomial f(x). Note if f(x) and g(x) are given 
explicitly, then it is necessary that g(x) divides f(x) and this does not give more power than univariate 
polynomials. However, the power comes if we do not know f(x) and g(x) explicitly, but given any x, we 
can compute f(x) and g(x). Let r(x) = f(x)/g(x) be a rational function. Suppose � is in the zero set 
of g(x). Then we know g(�) = f(�) = 0. How should we define r(�)? A good idea is to allow r(�) to 
take any possible value. This is explained in the Figure 1. 

Therefore, given a set of {(�i, yi)}i�[n], we relax the Welch-Berlekamp-type interpolation problem as 
follows: 

• (Welch-Berlekamp-type Goal): Find a polynomial p(x) such that p(�i) equals yi for many i 

• (Reformulation): Find a rational function r(x) which explains yi for all �i 
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Thus we replace the claim in Welch-Berlekamp by the following claim. 

Claim 5 (Welch-Berlekamp) If �p of degree < k agreeing n+k values of yi then a pair of polynomials 2 
n−k(N, E) exists with deg(N) � n+k and deg(E) � such that N(�i) = E(�i)p(�i) holds for all i.2 2 

n−kClaim 6 (A slight relaxation) A pair of polynomials (N, E) exists with deg(N) � n+k and deg(E) �2 2 
Nsuch that 
E (�i) = yi holds whenever2 E(�i) = 0.≡

Sketch of Proof We solve the linear system N(�i) = yiE(�i) for i = 1, · · · , n. This is a homogenous 
linear system and therefore always has a solution. Note (N, E) ≤ (0, 0) is a trivial solution. We will 
prove that the the system has more than one solution and thus a non-trivial solution exists. The system 
can be reformulated as a matrix-vector equation i.e., A X = 0 where A is the co-efficient matrix and X·
is the unknown vector. Note that the rank of matrix A, say r, can be at most n. However the number 
of unknowns is (n − k)/2 + 1 + (n + k)/2 + 1 = n + 2. This system has F

n+2−r number of solutions | |
including the trivial one. Since r � n, thus there exists a non-trivial solution. 

3.2 Nice Algebraic Interpretations of Data 

Earlier we have argued that univariate rational functions are generalizations of univariate polynomial 
functions. It turns out that there are even richer class of functions that fits our purpose better. Given 
a set of pairs {(�i, yi)}i�[n] we would fit them in an algebraic curve in the plane, that is, we would 
construct a bi-variate polynomial Q(x, y) s.t. Q(�i, yi) = 0 for all i ∃ [n]. We make the following claim. 

Claim 7 (Bi-variate Interpolation Claim) For every set of pairs {(�i, yi)} of size n, there exists a 
bivariate polynomial Q(x, y) with degx(Q), degy (Q) � ∈

n such that 

Q(�i, yi) = 0 for all i ∃ [n] and Q(x, y) = 0 ≡

Sketch of Proof We will set up a linear system with the coefficients of Q(x, y) being unknowns. 
Note from the degree bound, the number of unknown variables is (

∈
n + 1)2 . However the number 

of constraints is n. This is an under-constrained system. Therefore the system has more than 
solution including the trivial one (i.e., identically zero polynomial). Thus non-trivial solutions exists. 

Consider the algebraic curve in Figure 2. An inspection reveals that the curve is given by the equation 
Q(x, y) = (x4 − y4 − x2 + y2). Note however that there are many points which fits nicely on simpler 

one 

2curves (x + y), x − y) and (x2 + y − 1). Thus to solve the list decoding problems, we can think of 
getting an algebraic curves that fits the data nicely. Then we can hope that the curve may be factored 
into several factors and each factor will have good agreement with the data. We now show that this 
intuition works. 

3.3 List Decoding of Reed-Solomon Codes 

We describe the list decoding algorithm. 

2 Note thus we are essentially looking for a rational function in x. 
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Figure 2: An algebraic curve that fits many points 

List Decoding of

Input: {(�i i)}i�[n] (k 
∈

n 
Output pj � k pj (�i yi 

x(Q), degy (Q) � ∈
n Q(�i i i 

, y , t > + 1)
: A list of univariate polynomials of degree such that ) = 

= 0 where deg such that , y ) = 0 for all 

RS code 

for at least t 
values of i 

1. Find Q(x, y) ≡
2. Factor Q(x, y) into irreducible polynomials i.e., let Q(x, y) = Q1(x, y) · · ·Qs(x, y) 
3. Output all polynomials p1, · · · pj of degree � k if (y − pj (x)) ≤ Qj (x, y) and 

pj (�i) = yi for at least t values of i 

Claim 8 Algorithm List Decoding of RS code runs in poly time and outputs all polynomial p(x) 
such that p(�i) = yi for at least t values of i. 

Sketch of Proof Step 1 and 3 can clearly be done in polynomial time. Moreover there are efficient 
algorithms to solve the multivariate polynomial factorization problem over finite fields (in fact over 
almost all fields). Deterministic versions of these algorithms takes poly(log F , n) steps over most fields | |
and poly(|F|, n) steps over few fields3 . However efficient randomized versions are known that runs in 
poly(log F , n) time for all fields. This ensures that the algorithm is efficient i.e., runs in polynomial | |
time. 

By Claim 7 we know step 1 always finds a non-trivial Q. Therefore all that remains to show is the 

of step 1, then (y − p(x))|
p � k p(�i yi t i Q(

Q( (k 
∈

n p(x
following: If has degree and satisfies ) = for at least values of and if x, y) is an output 

x, y) provided t > + 1) + 1. Assume ) is such a polynomial. 
How could one hope to prove such divisibility results? In general this may be addressed using age-old 

Bezout’s theorem. 

Theorem 9 (Bezout’s Theorem in the plane) Let Q1(x, y) and Q2(x, y) be bivariate polynomials of 
degree at most D1 and D2, respectively over a field F . If Q1(x, y) and Q2(x, y) have more than D1 ·D2 

common zeros, then they share a non-trivial factor. 

Thus if one of the polynomials is irreducible, then this gives a divisibility criteria. It turns out that we 
can argue even simpler. We recall the following innocent lemma. 

Lemma 10 (Remainder Theorem) Let g(y) be an univariate polynomial over a field F . Then for any 
� ∃ F, (y − �) g(y) if and only if g(�) = 0.|

We mention that the above theorem holds over UFD (Unique Factorization Domain). We also mention 
that F[x], F[x1, · · · , xn] i.e., the ring of univariate and multivariate polynomials over a field, are in fact 
UFD. We will apply the above lemma over F[x]. 

3 For example, over a large prime field Fp 

8-4 



� 

� 

Recall we want to show that (y − p(x)) Q(x, y). By Lemma 10, it is therefore enough to show that |
Q(x, p(x)) is identically zero polynomial. Define 

def 
h(x) = Q(x, p(x)). 

The following claim can easily be verified by replacing y by h(x). 

Claim 11 deg(h(x)) � (1 + k)
∈

n. 

By hypothesis we have that p(�i) = yi for at least t values of i. Note whenever it holds that p(�i) = yi, 
we have h(�i) = Q(�i, p(�i)) = Q(�i, yi) = 0. This implies the following claim. 

Claim 12 h(x) has at least t zeros. 

Since a univariate polynomial of degree d can have at most d zeros, from Claims 11 and 12 and the 
fact that t > (1 + k)

∈
n we conclude that h(x) must be identically zero polynomial. This concludes the 

analysis. 

Remark Note that the degy (Q) � ∈
n and therefore it can have at most 

∈
n factors of the form 

(y − p(x)). However this does not improve upon the combinatorial version of the list decoding. The 
agreement assumed here is much larger than the one assumed in the combinatorial version. 

We now modify the interpolation lemma slightly. We now try to find a bivariate poly Q(x, y) with 
degx(Q) �

∈
kn and degy (Q) � n/k. With this setting the same algorithm can be used to recover 

codewords from agreement t > 2
∈

kn (can be proved in an analogous fashion). 

Theorem 13 Interpolating with a bivariate polynomial Q(x, y) with degx(Q) �
∈

nk and degy(Q) � 

n/k, the algorithm List Decoding of RS code solves the RS list decoding problem with agreements 
> 2

∈
kn in polynomial time. 

(Notes) 

1. As mentioned previously the best known list decoding algorithm can correct from agreements as 
low as 

∈
kn. Moreover the algorithm does not necessarily require that all �i’s are distinct. Though 

it assumes a bound on the number that a distinct �i can appear. We leave the details. 

2. Can we do better? A recent result of Guruswami and Rudra suggest that in order to improve the 
algorithm we have to exploit the fact that many �i’s are distinct. 

3. At this moment all the combinatorial results involving Reed-Solomon codes have their algorithmic 
counterparts. We mention that Guruswami and Vardy have recently shown that the Maximum-
Likelihood Decoding of Reed-Solomon Code is NP-complete. 
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