
1

6.879 Special Topics in Cryptography Instructor : Ran Canetti

Lecture 20: Verifiable MixNets
April 16, 2004 Scribe: Matt Lepinski

TwoByTwo Verifiable Mixes

Before solving the general case of verifiably mixing n ciphertexts, we first consider the case
of a verifiable twobytwo with two incoming ciphertexts, C1 and C2 and two outgoing
ciphertexts C � and C2

� . In this case, what the mixer must prove is that:1
1

(C1 ≈ C1
�) ∧ (C2 ≈ C2

�) ∨ (C1 ≈ C1
�) ∧ (C2 ≈ C1

�)

This is equivalent to proving:

[(C1 ≈ C1
�)∨ (C1 ≈ C2

�)]∧ [(C2 ≈ C1
�)∨ (C2 ≈ C2

�)]∧ [(C1
� ≈ C1)∨ (C1

� ≈ C2)]∧ [(C2
� ≈ C1)∨ (C2

� ≈ C2)]

Observed that the above expression is a conjunction of four disjunctions. We will give a
protocol which allows the prover to prove a single disjunction. The prover can then prove
the entire expression by separately proving that each of the four disjunctions is true.

First we recall from last lecture the ChaumPedersen honest zero knowledge protocol for
proving that two El Gamal ciphertexts, C1 = (α1, β1) = (gt,m1 · yt) and C � = (α1

� , β1
�)1 =

(gu,m�
1 · yu) have the same plaintext (where the prover knows the reencryption factor, v =

u− t).2 Let (a1, a2, b1, b2) be the quadruple (g, y, (α1
� /α1), (β1

� /β1)) = (g, y, g
Then m1

v , (m1
� /m1)· yv).

= m2 if and only if loga1
(b1) = loga2

(b2) = v. (Proof left as an easy exercise.) To
prove equality, use the following protocol:

P V

randomly select from ∗Zs q
¯ ¯: A = (Ā

1, A2) = (a
←− c

)s −→ 2
s, a1

: randomly select from ∗Zc q

r = s + c ∗ v : r −→

Accept if a r
1 = A1b

c
1 and a
r

2 = A2b
c
2

(This is really two parallel instances of the previous ChaumPedersen protocol, sharing r
and c. Although we don’t need this fact here, this protocol could be showing equality of
logarithms in two distinct groups.) The protocol is honestverifier zeroknowledge; it is also
a proof of knowledge of v. Moreover it is “special HVZK”: given any specific c, one can

¯pick A and r to match the conditional distribution of the transcripts, given c.
We now present an honest zeroknowledge protocol for proving the disjunction [(C1 ≈

C1
�) ∨ (C1 ≈ C2

�)] (where the prover knows either the first reencryption factor r1 or the

1Recall that we denote the relation “C has the same plaintext as D” by writing C ≈ D.
2Here we assume that g is a publically known generator of Zq

∗ .

Lecture 201

� � �

second reencryption factor r2):3 This protocol is derived from the paper by Cramer et
al. [CDS94].

P V
¯ ¯ A1, A2 −→

←− c : randomly select c

r1, r2, c1, c2 −→

The verifier accepts if (1) the ChaumPedersen verifier would accept the triple (¯ A1, c1, r1)
with ciphertexts C1 and C1

� (2) the Chaum Pedersen verifier would accept the triple (¯ A2, c2, r2)
with ciphertexts C1 and C2

� and (3) c = c1 ⊕ c2.

Completeness: Without loss of generality, we consider the case where the prover knows
first read encryption factor r1. The prover then runs the ChaumPedersen simulator for

¯ciphertexts C1 and C2
� to obtain the triple (¯ A2, c2, r2). The prover then chooses A2 as the

¯ ¯honest prover would in the ChaumPedersen protocol and sends A1, A2 to the verifier.
Upon receiving, challenge c from the verifier, the prover chooses c1 so that c = c1 ⊕ c2

and computes the response r1 to challenge c1 as the honest prover would in the Chaum
Pedersen protocol. The verifier will accept because (¯ A1, c1, r1) are constructed honestly as
in the ChaumPedersen protocol and (¯ A2, c2, r2) are constructed by the ChaumPedersen
Simulator. That is, the verifier accepts (¯ A1, c1, r1) because the ChaumPedersen protocol
is complete and the verifier accepts (¯ A2, c2, r2) because the ChaumPedersen protocol is
honest zeroknowledge.

Soundness: Recall that the “special” soundness of the ChaumPedersen protocol implies
¯that if for some A you have more than one valid c, r pair then you can extract a witness to

the fact that the two ciphertexts have the same plaintext (in particular, the reencryption
factor). If in the above protocol the prover can answer some � fraction of possible challenges
where � is nonnegligible, then one can sample random challenges c and in polynomial time
find a pair of challenges c =� c� such that the prover correctly answers responds to both c
and c�. Since c = c1 ⊕ c2 and c� = c�1 ⊕ c2

� and c = c� then either c1 = c1
� or c2 = c� . Therefore 2

one can extract either a witness that C1 ≈ C1
� or a witness that C1 ≈ C2

� and hence the
disjunction [(C1 ≈ C1

�) ∨ (C1 ≈ C2
�)] must be true.

Honest ZeroKnowledge: The simulator picks c1 and c2 independently at random and
¯selects c so that c = c1 ⊕ c2. The simulator then constructs A1 and r1 corresponding to

challenge c1 in the same way that the ChaumPedersen simulator would. Similarly, the
¯simulator constructs A2 and r2 corresponding to challenge c2 in the same way that the

ChaumPedersen simulator would. Observe that since c1 and c2 are chosen independently,
c is a random element of Zq ∗ .

Remark: In the above protocol, one can interpret c1 and c2 as a sharing of secret c.
This is a special case of a general connection between secret sharing schemes and proofs of
monotone Boolean formulas. See [CDS94] for more details.

Here we denote by ⊕ the operation of addition in the ring Zq
∗.

Lecture 202

3

Remark: Since the above protocol is honest zero knowledge, it is also witness indistinguish
able. Recall the witness indistinguishable proofs can be composed in parallel and remain
witness indistinguishable.

2 Going From 2 to n

Here we use sorting networks to build an n by n verifiable mix from many 2 by 2 verifiable
mixes. 4 A sorting network is a circuit with n input wires and n output wires consisting of 2
by 2 comparator gates. The operation of a comparator is as follows: If the two input wires
have values x and y then the comparator outputs max(x, y) on the “top” output wire and
min(x, y) on the “bottom” output wire.

x −−−−− ◦ −−−−−max(x, y)
|
|
|

y −−−−− ◦ −−−−−min(x, y)

Such a network of comparators is a valid sorting network if for any possible set of values on
the n input wires, the values on the n output wires are in sorted order. There exist sorting
networks with n log2 n comparators. More efficient sorting networks also exist, but are very
complex.

The property of a sorting network which we make use of is that the sorting network can
realize all possible permutations. Our strategy is to replace each comparator in a sorting
network with a 2 by 2 verifiable mix to achieve an n by n verifiable mix. That is, (A) if the
prover shows that each comparator in the network is performing a valid permutation then
the entire network must be performing a valid permutation and (B) since the comparators in
the network are capable of realizing any n by n permutation, the fact that a sorting network
is used gives the verifier no information about the permutation being implemented.5

Remark: Since the proof that the permutation is valid will follow the structure of the
sorting network, it is reasonable for the prover to take this into account when performing
the mix. One idea is to have the prover perform the mix as follows: First the prover picks
a random metatag for each input ciphertext. Then the prover runs the sorting network to
sort according to the metatags. Then at the end, the prover deletes the metatags.

Remark: To obtain the challenges for the proof, you could either have everyone commit to
challenges ahead of time (i.e, have everyone commit to a share of the master challenge) and

4For more information on sorting networks see “Introduction to Algorithms” by Cormen, Leiserson, Rivest
and Stien (MIT Press and McGrawHill, 2001). The approach here for building a mix network based on a
corresponding sorting network is due to Jakobsson and Juels [JJ99].

5Depending on the notion of voter privacy that we are trying to achieve, we may not actually need to
use a sorting network here. If we were to use any network of comparators that allowed each input value
to reach each output position (but not necessarily capable of realizing every permutation) then we would
still achieve a weaker yet meaningful notion of voter privacy. One can imagine settings where one would be
willing to accept the weaker notion of voter privacy in exchange for gains in prover efficiency.

Lecture 203

3

then have everyone decommit after the first step of the proofs had been given. Alternatively,
you could use the FiatShamir paradigm and obtain the challenges by hashing the first prover
message in the protocol. Additionally, when running the mixnet, one could think of having
each mix server give a proof of correctness before the next mixserver began working, but
in practice it is probably better for all the servers to give proofs after all the mixing has
been done (as this allows for greater parallelism).

Remark on Batch Sizes:

In a large election it is probably infeasible to run a single mixnet consisting of all voters in
the election. Instead, it is probably more reasonable to mix the ballots in batches (possibly
corresponding to some geographic region such as a precinct or county). The problem with
making batches too large is that it increases the time to perform the mix. The problem
with making the batches too small is that voters are anonymous only within their batch. To
better understand the efficiency of the above scheme, we roughly estimate its performance
on a precinct with a thousand voters.

Number of Voters(n) = 103

Number of Comparators(nlog 2 n) = 105

Modular Exponentiations per Comparator = 10

Total Modular Exponentiations = 106

Modular Exponentiations per Second (on PC) = 50 − 100

Total Time to Perform Verifiable Mix = 3 − 4 hours

It seems fairly reasonable to have a separate PC for each precinct and 34 hours is very
reasonable amount of time to have to wait for election results. Therefore, one can imagine
the above scheme actually being used in practice. However, Andrew Neff in his paper,
“Verifiable Mixing (Shuffling) of ElGamal Pairs”, provides an even faster verifiable mixing
protocol which requires just 8n + 5 modular exponentiations to prove and 9n + 2 modular
exponentiations to verify. Dan Boneh says that the Neff mixing protocol is efficient enough
to mix batches of 100,000 ballots in about 20 hours.

References

[CDS94] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowl
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Proc. CRYPTO ’94, volume LNCS, pages 174–187. Springer, 1994.

[JJ99]	 M. Jakobsson and A. Juels. Millimix – mixing in small batches. Technical Report
9933, DIMACS, June 1999.

Lecture 204

