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Lecture 25: PairingBased Cryptography 
May 5, 2004 Scribe: Ben Adida 

1 Introduction 

The field of PairingBased Cryptography has exploded over the past 3 years [cry, DBS04]. 
The central idea is the construction of a mapping between two useful cryptographic groups 
which allows for new cryptographic schemes based on the reduction of one problem in one 
group to a different, usually easier problem in the other group. 

In many research papers, the first of these two groups is referred to as a Gap Group, 
where the Decisional DiffieHelman problem [Bon98] is easy (because it reduces to an easy 
problem in the second group), but the Computational DiffieHelman problem remains hard. 

The known implementations of these pairings – the Weil and Tate pairings – involve 
fairly complex mathematics. Fortunately, they can be dealt with abstractly, using only the 
group structure and mapping properties. Many interesting schemes have been built based 
purely on abstract bilinear maps. 

2 Bilinear Maps 

The major pairingbased construct is the bilinear map. Consider two groups G1 and G2 of 
prime order q. For clarity, we denote G1 using additive notation and G2 using multiplica
tive notation, even though the group operations in G1 and G2 may well be very different 
from the wellknown arithmetic addition and multiplication. (Sometimes G1 is also written 
multiplicatively in the literature.) 

We consider P and Q two generators of G1, and we write 

a times 

aP = P + P + . . . + P 

We now consider the mapping e as follows: 

e : G1 × G1 → G2 

(Note that we do not know how to build a selfbilinear map, G1 × G1 → G1. This would 
be quite powerful.) 

Useful bilinear maps have three properties: 

Bilinearity 
∀P, Q ∈ G1, ∀a, b ∈ Z∗ 

q , 

e(aP, bQ) = e(P, Q)ab 
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NonDegeneracy If everything maps to the identity, that’s obviously not interesting:


∀P ∈ G1, P = 0 ⇒ �e(P, P )� = G2 (e(P, P ) generates G2) 

In other words: 

P = 0 ⇒ e(P, P ) = 1 �

Computability e is efficiently computable. 

We can find G1 and G2 where these properties hold: the Weil and Tate pairings prove 
the existence of such constructions. Typically, G1 is an ellipticcurve group and G2 is a 
finite field. 

Complexity Implications 

The construction of a bilinear map comes with a number of complexity implications. 

Theorem 1 The Discrete Log Problem in G1 is no harder than the Discrete Log Problem 
in G2. 

Proof 1 Consider Q = aP (still using additive notation), though a is unknown. Solving 
the Discrete Log Problem involves discovering a for a given P and a random Q. 

We note: 

e(P, Q) = e(P, aP ) 
= e(P, P )a 

Thus, we can reduce the Discrete Log Problem in G1 to the Discrete Log Problem in G2. 
Given P ∈ G1 and a random Q ∈ G1, and noting that the mapping e is easily computable, 
we can compute logP (Q) as follows: 

1. determine P � = e(P, P ) 
2. determine Q� = e(P, Q) 
3. determine a = logP � (Q�) in G2. 
4. a is also logP (Q). 

Theorem 2 The Decisional DiffieHelman [Bon98] is easy in G1. 

Proof 2 Solving the DDH problem involves distinguishing: 

�P, aP, bP, cP � with a, b, c ∈R Z
∗, and q 

�P, aP, bP, abP � with a, b ∈R Z
∗ 
q 

If we define P, A, B, C as the four values given to the distinguisher, the distinguisher 
functions as follows: 
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1. Determine v1 = e(A, B) and v2 = e(P, C) 

2. If v1 = v2, then the tuple is of the type �P, aP, bP, abP �. 

Indeed, assume C = abP , then: 

e(A, B) = e(aP, bP ) 
= e(P, P )ab 

= e(P, abP ) 
= e(P, C) 

Since we know the mapping e is nondegenerate, the equality e(A, B) = e(P, C) is equivalent 
to c = ab. The distinguisher can gain a significant advantage in deciding DDH given the 
mapping e. 

4 Cryptographic Schemes 

The application of bilinear maps leads to numerous interesting cryptographic schemes. 

4.1 OneRound, 3party Key Agreement Scheme 

In 2000, Joux introduced a scheme for oneround, 3party key agreement based on bilinear 
maps [Jou00]. Key agreement schemes based on DiffieHelman [DH76] are well known, but 
all require more than one round of exchanged data. 

In the Joux scheme, assume the above notation and existence of a bilinear map between 
groups G1 and G2 with P a generator of G1. Three parties A, B, C respectively have secrets 
a, b, c ∈ Z∗. The protocol functions as follows: q 

1. A −→ B, C: aP 
2. B −→ A, C: bP 
3. C −→ A, B: cP 
4. Note that steps 1, 2, 3 are done in one round of parallel message exchanges. 
5. A computes e(bP, cP )a = e(P, P )abc . 
6. B computes e(aP, cP )b = e(P, P )abc . 
7. C computes e(aP, bP )c = e(P, P )abc . 
8. Note that steps 5, 6, 7 are done in parallel. 
9. All parties have the same shared key K = e(P, P )abc ∈ G2. 

This protocol is contingent on the BDH assumption. 
Definition The Bilinear DiffieHelman (BDH) Assumption considers the computation of 

e(P, P )abc given �P, aP, bP, cP � to be hard. 

4.2 IdentityBased Encryption 

In 1984, Shamir imagined a publickey encryption scheme where any publicyknown string 
(e.g. someone’s email address) could be used as a public key [Sha85]. In this scheme, 
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the corresponding private key is delivered to the proper owner of this string (e.g. the 
recipient of the email address) by a trusted private key generator. This key generator must 
verify the user’s identity before delivering a private key, of course, though this verification 
is essentially the same as that required for issuing a certificate in a typical Public Key 
Infrastructure (PKI). Thus, an IdentityBased Encryption Scheme enables the deployment 
of a publickey cryptosystem without the prior setup of a PKI: a user proves his identity in 
a lazy way, only once he needs his private key to decrypt a message sent to him. 

In 2001, Boneh and Franklin devised the first practical implementation of such an 
IdentityBased Encryption scheme [BF01]. Their approach uses bilinear maps and relies 
on the BDH Assumption and the Random Oracle model. 

Setup 

• the usual G1 and G2 with a bilinear mapping e : G1 × G1 −→ G2 and P a generator 
• a systemwide secret key s ∈ R Z

∗.q 
• a corresponding systemwide public key Ppub = sP . 

Encrypt We want to encrypt a message m to public key A using the systemwide settings 
from above. The encryption function is: 

rEnc(Ppub, A, m) = � rP, M ⊕ H2(gA)� , r ∈ R Z
∗ 
q 

gA = e(QA, Ppub) 
QA = H1(A) 

H1 : { 0, 1} ∗ −→ G1, a random oracle 

H2 : G2 −→ { 0, 1} ∗, a random oracle 

Decrypt We want to decrypt a ciphertext c = (u, v) encrypted with publickey string 
A. The secret key is delivered to the owner of A as dA = sQA, with QA defined as above: 
QA = H1(A). We define: 

Dec(u, v, dA) = v ⊕ H2(e(dA, u)) 
= v ⊕ H2(e(sH1(A), rP )) 
= v ⊕ H2(e(H1(A), P )rs) 
= v ⊕ H2(e(QA, sP )r ) 
= v ⊕ H2(e(QA, Ppub)r ) 

r= v ⊕ H2(gA) 
r r= (m ⊕ H2(gA)) ⊕ H2(gA) 

= m 
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This scheme is not CCA2secure, but can be made so with the FujisakiOkamoto con
struction [FO99], which assumes the Random Oracle model — nothing further than what 
we already assume. 
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