
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 4

Outline

• Another look at Java built-in operators
• String and StringBuffer built-in java classes

• Classes, objects, and methods

Two Main Kinds of Types in Java

primitive data types

•	 the simplest types
•	 cannot decompose into

other types
•	 have values only, no

methods
•	 Examples:
int - integer
double - floating point
char - character

class types
•	 more complex

•	 composed of other
types (primitive or
class types)

•	 have both data and
methods

•	 Examples:

String

StringBuffer

Built-in Operators for primitive types

•	 Arithmetic (use with int, double, etc.):
+, -, *, /, %

•	 Comparison (use with int, double, char, etc.):
==, !=, <, <=, >, >=

•	 Logical (use with boolean):
&&, ||, !

Specialized Assignment Operators

•	 A shorthand notation for performing an operation
on and assigning a new value to a variable

•	 General form: var <op>= expression;

– equivalent to:
var = var <op> (expression);

– <op> is +, -, *, /, or %
•	 Examples:

amount += 25;

//amount = amount + 25;

Specialized Assignment Operators

amount *= 1 + interestRate;

/*

amount =

amount * (1 + interestRate);
*/

•	 Note that the right side is treated as a unit (as
though there are parentheses around the entire
expression)

Increment and Decrement Operators

•	 Shorthand notation for common arithmetic operations on
integer variables used for counting

•	 Some counters count up, some count down

•	 The counter can be incremented (or decremented) before
or after using its current value
int count;
++count; //preincrement count: count = count + 1 before using it
count++; //postincrement count: count = count + 1 after using it
--count; //predecrement count: count = count -1 before using it
count--; //postdecrement count: count = count -1 after using it

Increment and Decrement Operators

Example:

int x = 5;

int y = 5;

int result;

What will be the value of result after each of

these executes? (assume each line is independent of

the other)

(a) result = x / ++y;
(b) result = x / y++;
(c) result = x + --y;
(d) result = x + y--;

Returned Values

•	 Expressions return values: a number, character, etc.

produced by an expression is “returned”, (it is the
“return value.”)
int firstNumber, secondNumber,

productOfNumbers;

firstNumber = 5;

secondNumber = 9;

productOfNumbers = firstNumber *

secondNumber;

(in the last line, firstNumber returns the value 5

and secondNumber returns the value 9)

Returned Values

firstNumber * secondNumber is an

expression that returns the integer value 45

• Similarly, methods return values

Integer.parseInt(str); is a method of the

Java built-in class Integer that returns the integer value
of a string such as “12”, “67”, etc.

The String Class

•	 A string is a sequence of characters
•	 The String class is used to store strings
•	 The String class has methods to operate on strings

•	 String constant: one or more characters in double
quotes

•	 Examples:

char charVariable = ‘a’
String stringVariable = "a";
String sentence = "Hello, world";

The String Class

• Individual characters in a variable of type

String can be accessed but not modified

•	 To modify individual characters in a string,

need to use a variable of type StringBuffer
(more to come on class StringBuffer)

•	 A complete interface specification of Java’s
built-in classes and their methods (including
that of the String class) is at:
http://java.sun.com/j2se/1.3/docs/api/index.html

Indexing Characters within a String

•	 The index of a character within a string is
an integer starting at 0 for the first character
and gives the position of the character

• The charAt(Position)method returns
the char at the specified position

• substring(Start, End)method
returns the string from position Start to
position End

Indexing Characters within a String

• Example:

String greeting = "Hi, there!";

greeting.charAt(0)returns H
greeting.charAt(2)returns ,
greeting.substring(4,6)returns the

H i , t h e r e !
0 1 2 3 4 5 6 7 8 9

The StringBuffer Class

•	 Implements a modifiable sequence of characters

– the length and content of the sequence of characters can be
modified using its methods

– has many of the same methods as the String class and a few
more (append, insert, replace)

•	 To create a new StringBuffer object that initially
represents the string “rue” and assign it to a variable
strBuffer, of type StringBuffer, write

StringBuffer strBuffer = new StringBuffer(“rue”);
// illegal to write StringBuffer strBuffer = “rue”

or write

String str = “rue”;

StringBuffer strBuffer = new StringBuffer(str);

The StringBuffer Class

•	 Modify the sequence:

strBuffer.append(‘s’);
System.out.println(strBuffer); // prints out rues
System.out.println(strBuffer.length()); // prints out 4
strBuffer.insert(2, ‘s’);
System.out.println(strBuffer); // prints out ruses
strBuffer.insert(1, “ef”);
System.out.println(strBuffer); // prints out refuses
System.out.println(strBuffer.length()); // prints out 7
strBuffer.replace(2, 3, “-”);
System.out.println(strBuffer); // prints out re-uses

Classes, Objects, and Methods

• Instance variables
• Instantiating (creating) objects

• A look at methods
• Parameter passing (pass-by-value

and pass-by-reference)
• Static methods and static variables

Instance Variables (Data Items)

•	 Person class has the following instance variables/data

items: firstName, lastName, and age:

public String firstName;

public String lastName;

public double age;

• public means that there are no restrictions on how
an instance variable is used

• private means that the instance variable cannot be
accessed directly outside the class

•	 In general, instance variables should be declared
private instead of public

Instance Variables (Data Items)

public class Person

{

private String firstName;

private String lastName;

public double age;

public String getFirstName()

{

return(firstName);

}

// other method definitions ...

}

Instantiating (Creating) Objects

• Syntax:

ClassName instanceName =

new ClassName();
•	 Note the keyword new

•	 Example: instantiate an object of class Person within the
definition of another class
Person newPerson = new Person();

•	 Public instance variables can be accessed and modified
using the dot operator:
newPerson.age = 35.5;

Instantiating (Creating) Objects

•	 Private instance variables cannot be modified/accessed in

this way:
newPerson.firstName = “B’Elanna”; //illegal

•	 Define public get and set methods in class Person to
retrieve and modify values of private instance variables:
–	public String getFirstName()
–	public void setFirstName(String fName)
–	public String getLastName()
–	public void setLastName(String lName)

•	 To set first and last name instance variables:
–	newPerson.setFirstName(“B’Elanna”);

–	newPerson.setLastName(“Torres”);

Instantiating (Creating) Objects

•	 To retrieve values of first and last name instance

variables:
– newPerson.getFirstName();

//returns “B’Elanna”

– newPerson.getLastName();

//returns “Torres”

•	 Instance variable age should also be private:
–	private double age;
–	public double getAge()
–	public void setAge(double ageValue)

Return Type of Methods

•	 As seen in previous slides, some methods
perform an action and return a single value

•	 Some methods just perform an action (e.g. print
a message) and do not return a value

•	 All methods require that the return type be
specified

•	 Return types may be:
– a primitive data type, such as char, int, double
– a class, such as String, Person, etc.

– void if no value is returned

Return Type of Methods

•	 You can use a method wherever it is legal to use

its return type, for example the
getFirstName() method of Person
returns a String, so this is legal:
Person anotherPerson =
new Person();

String name =
anotherPerson.getFirstName();

•	 Also legal:

double age =

anotherPerson.getAge();

Return Statement

•	 Methods that return a value must execute a return

statement that includes the value to return
•	 For example:

public double getAge()

{

return age;

//return(age); could be used instead

}

private double age = 79.6;

•	 A return statement is not required in a method that does
not return a value (has a void return type)

Good Programming Practice

• Start class names with a capital letter

• Start method names with a lower case

letter
• Include comments in your code that

describe
– what each class does
– what each method does

– any unusual/non-intuitive steps taken in

solving a problem

The main Method

• A program written to solve a problem (rather than define

an object) is written as a class with one method, main

• Invoking the class name invokes the main method

• Example: HelloWorld Class
• Note the basic structure:

public class HelloWorld

{

public static void main(String[] args)

{
<statements that define the main method>
}

}

The "this." Operator

• this. refers to the object that contains the
reference (an object’s way of referring to itself)

•	 Methods called in a .java file that gives an
object’s definition do not need to reference the
object

• In such files, you may omit the use of "this.”

in referring to a method, since it is presumed

•	 For example, if answerOne() is a method
defined in the class Oracle:

The "this." Operator

public class Oracle

{
private int firstNum = 5;
private int secondNum = 10;

public int answerOne()
{

return(firstNum + secondNum);
}

// code stored in file Oracle.java

The "this." Operator

public int getAnswer()
{
/* One way to invoke the answerOne

method defined in this file
(Oracle.java)is: answerOne();

*/
//Another way is to use "this."
int num = this.answerOne();
return(num);
}

} // end class Oracle

Calling an Object’s Methods

•	 To call a method outside its object definition file,
in general, a valid object name should precede the
method name

•	 For example (in a file other than Oracle.java):

Oracle myOracle = new Oracle();
//myOracle is not part of the definition
//code for Oracle
...
//dialog is a method defined in Oracle class
myOracle.dialog();

Local Variables and Blocks

• A block (also called a compound statement) is the set
of statements between a pair of matching braces
(curly brackets)

•	 A variable declared inside a block is known only
inside that block
– it is local to the block, therefore it is called a local

variable
– when the block finishes executing, local variables

disappear
– references to it outside the block cause a compile

error

Local Variables and Blocks

•	 Some programming languages (e.g. C and
C++) allow a variable’s name to be reused
outside the local block
– this is confusing and not recommended

•	 In Java, a variable name can be declared
only once for a method
– although the variable does not exist outside

the local block, other blocks in the same

method cannot reuse the variable's name

Variable Declaration

•	 Declaring variables outside all blocks but within a

method definition makes them available within all the
blocks in that method:
public void printSomeValue(int n)

{

int i=0; // i is available in all blocks (including if and while)
if (i < n) {

int j = (i + n) * 50; // j is available only in the if block;
}
while (j < 50) { // illegal, j is not available outside if block

System.out.println(“j is ” + j);

j++;

}

}

Variable Declaration

Good Programming Practice:

•	 declare variables just before you use them

•	 initialize variables when you declare them

•	 do not declare variables inside loops

– it takes time during execution to create and destroy

variables, so it is better to do it just once for loops

•	 it is okay to declare loop counters in the
Initialization field of for loops, e.g.
for(int i=0; i <10; i++)…
– the Initialization field executes only once,

when the for loop is first entered

Passing Values to a Method: Parameters

•	 Some methods can be more flexible (and useful) if we

pass them input values
•	 Input values for methods are called passed values or

parameters
•	 Parameters and their data types must be specified

inside the parentheses of the heading in the method
definition
– these are called formal parameters

•	 The calling object must put values of the same data
type, in the same order, inside the parentheses of the
method invocation
– these are called arguments, or actual parameters

Parameter Passing Example

//Definition of method to double an integer
public int doubleValue(int numberIn)
{

return 2 * numberIn;

}
//Invocation of the method... somewhere in main...

int next = 55;
System.out.println("Twice next = " + doubleValue(next));

• Formal parameter in the method definition:

– numberIn

• Argument in the method invocation:
– next

Pass-By-Value:

Primitive Data Type Arguments

•	 When the method is called, the value of
each argument is copied (assigned) to its
corresponding formal parameter

•	 The number of arguments must be the same
as the number of formal parameters

•	 The data types of the arguments must be the
same as the formal parameters and in the
same order

Pass-By-Value:

Primitive Data Type Arguments

•	 Formal parameters are initialized to the
values passed

•	 Formal parameters are local to the method
for which they are defined

•	 Variables used as arguments cannot be
changed by the method
– the method only gets a copy of the variable's

value

Variables: Class Type vs. Primitive

Type

What does a variable hold?
– It depends on whether its type is a primitive type or

class type

•	 A primitive type variable holds the value of the
variable

•	 Class types are more complicated
– classes have methods and instance variables

Variables: Class Type vs. Primitive

Type

•	 A class type variable holds the memory address
of the object
– the variable does not actually hold the value of the

object
– in fact, as stated above, objects generally do not

have a single value and they also have methods, so it
does not make sense to talk about an object’s
"value"

Variables: Class Type vs. Primitive

Type

• See handout

Assignment with

Variables of a Class Type

klingon.set(“Klingon ox”, 10, 15);
earth.set(“Black rhino”, 11, 2);
earth = klingon;
earth.set(“Elephant”, 100, 12);
System.out.println(“earth:”);
earth.writeOutput();
System.out.println(“klingon:”);
klingon.writeOutput();

What will the output be?

(see the next slide)

Assignment with

Variables of a Class Type

klingon.set(“Klingon ox”, 10, 15);
earth.set(“Black rhino”, 11, 2);
earth = klingon;
earth.set(“Elephant”, 100, 12);
System.out.println(“earth:”);
earth.writeOutput();
System.out.println(“klingon:”);
klingon.writeOutput();

What will the output be?

klingon and earth both print elephant.

Why do they print the same thing?
(see the next slide)

Output:

earth:
Name = Elephant
Population = 100
Growth Rate = 12%
klingon:
Name = Elephant
Population = 100
Growth Rate = 12%

klingon.set(“Klingon ox”, 10, 15);
earth.set(“Black rhino”, 11, 2);
earth = klingon;
earth.set(“Elephant”, 100, 12);
System.out.println(“earth:”);
earth.writeOutput();
System.out.println(“klingon:”);
klingon.writeOutput();

Why do they print the same thing?
The assignment statement makes earth and
klingon refer to the same object.
When earth is changed to “Elephant”,
klingon is changed also.

Before the assignment
statement, earth and
klingon refer to two
different objects.
earth

klingon

Black rhino
11
2

Klingon ox
10
15

After the assignment
statement, earth and
klingon refer to the
same object.
earth

klingon
Klingon ox
10
15

Assignment with

Variables of a Class Type

•	 A class variable returns a number
corresponding to the memory address where
the object with that variable name is stored

•	 If two class variables are compared using ==,
it is their addresses, not their values that are
compared!

•	 This is rarely what you want to do!

• Use the class's .equals() method to

compare the values of class variables

Comparing Class Variables

Person firstPerson = new Person();
firstPerson.setFirstName(“Lisa”);
Person secondPerson = new Person();
secondPerson.setFirstName(“Barry”);

if(firstPerson == secondPerson)
//this compares their addresses
{

<body of if statement>
}

if(firstPerson.equals(secondPerson)
//this compares their variable values
{

<body of if statement>
}

Pass-by-Reference:

Class Types as Arguments

•	 Class variable names used as parameters in a
method call copy the argument's address
(not the value) to the formal parameter

•	 So the formal parameter name also contains
the address of the argument

•	 It is as if the formal parameter name is an
alias for the argument name

Pass-by-Reference:

Class Types as Arguments

•	 Any action taken on the formal parameter
is actually taken on the original argument

•	 Unlike the situation with primitive types, the
original argument is not protected for class
types

Class Type as a Method Argument

//Method definition with a DemoSpecies class
//parameter
public void makeEqual(DemoSpecies otherObject)
{

otherObject.name = this.name;
otherObject.population =

this.population;
otherObject.growthRate =

this.growthRate;
}

//Method invocation

DemoSpecies s1 = new

DemoSpecies("Crepek", 10, 20);
DemoSpecies s2 = new DemoSpecies();
s1.makeEqual(s2);

Class Type as a Method Argument

//Method definition with a DemoSpecies class parameter

public void makeEqual(DemoSpecies otherObject)

{

otherObject.name = this.name;

otherObject.population = this.population;

otherObject.growthRate = this.growthRate;

}

//Method invocation

DemoSpecies s1 = new DemoSpecies("Crepek", 10, 20);

DemoSpecies s2 = new DemoSpecies();

s1.makeEqual(s2);

• The method call makes otherObject an alias

for s2, therefore the method acts on s2, the

DemoSpecies object passed to the method!

• This is unlike primitive types, where the
passed variable cannot be changed.

Static Methods

•	 Sometimes there is no obvious object to which a
method should belong (e.g., a method to
compute the square root of a number)

•	 Use the static keyword in defining such methods

•	 Static methods can be called without first

creating an object
•	 Use the class name instead of an object name to

invoke them
•	 Static methods are also called class methods

Static Methods

•	 Declare static methods with the static

modifier, for example:
public static double circleArea(double radius) ...

•	 Since a static method doesn’t need a calling
object, it cannot refer to a (nonstatic) instance
variable of its class.

•	 Likewise, a static method cannot call a nonstatic
method of its class (unless it creates an object of
the class to use as a calling object).

Uses for Static Methods

•	 Static methods are commonly used to provide
libraries of useful and related functions

• Examples:

– The different read methods in the SavitchIn class`
– the Math class

• automatically provided with Java
• functions include pow, sqrt, max, min, etc.

• more details to come

The Math Class

•	 Includes constants Math.PI (approximately
3.14159) and Math.E (base of natural
logarithms which is approximately 2.72)

•	 Includes three similar static methods: round,
floor, and ceil
– All three return whole numbers (although they are

of type double)
– Math.round returns the whole number nearest its

argument

The Math Class

Math.round(3.3) returns 3.0 and
Math.round(3.7) returns 4.0
– Math.floor returns the nearest whole number

that is equal to or less than its argument
Math.floor(3.3) returns 3.0 and
Math.floor(3.7) returns 3.0
– Math.ceil (short for ceiling) returns the nearest

whole number that is equal to or greater than its
argument

Math.ceil(3.3) returns 4.0 and
Math.ceil(3.7) returns 4.0

Static Variables

•	 Example of a static variable definition:
private static int numTries = 0;

• Similar to definition of a named constant,

which is a special case of static variables.

•	 Static variables may be public or private but
are usually private for the same reasons
instance variables are.

Static Variables

•	 Only one copy of a static variable exists for
a class and it can be accessed by any object
of the class.

•	 May be initialized (as in example above) or
not.

•	 Can be used to let objects of the same class
coordinate (see 2nd handout).

Read

• Chapter 4

