
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 6

Designing Methods:

Top-Down Design

•	 In pseudocode, write a list of subtasks that the method must
perform

•	 If you can easily write Java statements for a subtask, you are
finished with that subtask

• If you cannot easily write Java statements for a subtask, treat

it as a new problem and break it up into a list of subtasks

•	 Eventually, all of the subtasks will be small enough to easily
design and code

•	 Solutions to subtasks might be implemented as private helper
methods

•	 Top-down design is also known as divide-and-conquer or
stepwise refinement

Designing Methods:

Top-Down Design

•	 Person class has attributes of type String and
GregorianCalendar corresponding to a person’s first name,
last name, and date of birth: firstName, lastName, and
dateOfBirth

•	 Create a new method:
double ageOfPerson()
for the Person class that returns the approximate age (with
respect to year and month of birth) of a person. Approximate
in this case means that if a person was born in September of
1965 and the current month and year are September 2002, the
age returned should be 37.0 (the actual day of the month on
which the person was born is ignored).
What tasks should this method perform?

Designing Methods:

Top-Down Design

Some tasks this method should perform:

– find out the current year
– find out the current month
– find out the birth year
– find out the birth month
– find out the age using these values

• subtract the birth year and month

from the current year and month

• return the value obtained as the
age

ageOfPerson() method

public double ageOfPerson()

{
// The GregorianCalendar class default constructor creates
// a new date and time corresponding to the date and time
// the program in which it is called is executed
GregorianCalendar today = new GregorianCalendar();
// Calendar is a parent class to GregorianCalendar
// YEAR is a static named constant of the Calendar class
int thisYear = today.get(Calendar.YEAR);
int birthYear = dateOfBirth.get(Calendar.YEAR);
// Java Gregorian Calendar month is zero based -- Jan==0
int thisMonth = today.get(Calendar.MONTH);
int birthMonth = dateOfBirth.get(Calendar.MONTH);
double age = (thisYear - birthYear) + ((thisMonth - birthMonth)/12.0);
return(age);

}

ageOfPerson() method

public double ageOfPerson()

{
// The GregorianCalendar class default constructor creates
// a new date and time corresponding to the date and time The Person class definition
// the program in which it is called is executed would need to include the
GregorianCalendar today = new GregorianCalendar();

// Calendar is a parent class to GregorianCalendar following line at the top of

// YEAR is a static named constant of the Calendar class the Person.java file:

int thisYear = today.get(Calendar.YEAR);

int birthYear = dateOfBirth.get(Calendar.YEAR); import java.util.*;

// Java Gregorian Calendar month is zero based -- Jan==0 This import statement tells

int thisMonth = today.get(Calendar.MONTH);

int birthMonth = dateOfBirth.get(Calendar.MONTH); the java compiler where to

double age = (thisYear - birthYear) + find the GregorianCalendar

((thisMonth - birthMonth)/12.0); and Calendar built-in classesreturn(age);

}

Wrapper Classes

• Used to wrap primitive types in a class structure

• All primitive types have an equivalent class
• The class includes useful constants and static methods,

including one to convert back to the primitive type

Primitive type Class type Method to convert back

int Integer intValue()

long Long longValue()

float Float floatValue()

double Double doubleValue()

char Character charValue()

Wrapper class example: Integer

• Declare an Integer class variable:

Integer n = new Integer();
•	 Convert the value of an Integer variable to its

primitive type, int:
int i = n.intValue();

//method intValue()returns an int

•	 Some useful Integer constants:

– Integer.MAX_VALUE - the maximum

integer value the computer can represent

– Integer.MIN_VALUE - the smallest integer

value the computer can represent

Wrapper class example: Integer

•	 Some useful Integer methods:
–Integer.parseString("123") to

convert a string of numerals to an integer
–Integer.toString(123) to

convert an Integer to a String

•	 The other wrapper classes have similar
constants and functions

Wrapper classes

There are some important differences in the code to

use wrapper classes and that for the primitive types

Wrapper Class	 Primitive Type

•	 variables contain the address • variables contain a value
of the object

•	 variable declaration example: • variable declaration example:
Integer n;	 int n;
•	 variable declaration & init:
Integer n = new • variable declaration & init.:
Integer(0); int n = 0;

•	 assignment: • assignment:

n = new Integer(5); n = 99;

Outline

• Arrays continued

• Packages
• Inheritance

Partially Filled Arrays

•	 Sometimes only part of an array has been
filled with data

• Array elements always contain something,

whether you have written to them or not

– elements which have not been written to/filled

contain unknown (garbage) data so you should
avoid reading them

•	 There is no automatic mechanism to detect
how many elements have been filled - you,
need to keep track...

Example of a Partially Filled Array

entry[0]

entry[1]

entry[2]

Anne

Stephen

Rahul countOfEntries - 1

entry[3]
garbage values

entry[4]

countOfEntries has a value of 3.
entry.length has a value of 5.

Multidimensional Arrays

•	 Arrays with more than one index
– number of dimensions = number of indexes

•	 Arrays with more than two dimensions are a
simple extension of two-dimensional (2-D)
arrays

•	 A 2-D array corresponds to a table or grid
– one dimension is the row
– the other dimension is the column
– cell: an intersection of a row and column
– an array element corresponds to a cell in the table

Multidimensional Arrays

Example of usage:

Store the different possible ending balances
corresponding to $1000 saved at 6 different
interest rates over a period of 10 years

Table as a 2-D

Column Index 4

(5th column)Array
0 1 2 3 4 5

0
1
2
3
4
É É É É É É É

In dexe s
$1050 $1055 $1060 $1065 $1070 $1075
$1103 $1113 $1124 $1134 $1145 $1156
$1158 $1174 $1191 $1208 $1225 $1242
$1216 $1239 $1262 $1286 $1311 $1335
$1276 $1307 $1338 $1370 $1403 $1436

Row Index 3
(4th row)

• Generalizing to two indexes: [row][column]
• First dimension: row index
• Second dimension: column index
• Cell contains balance for the year/row and percentage/column
• All indexes use zero-numbering

– Balance[3][4] = cell in 4th row (year = 4) and 5th column (7.00%)
– Balance[3][4] = $1311 (shown in yellow)

Java Code to Create a 2-D Array

• Syntax for 2-D arrays is similar to 1-D
arrays

• Declare a 2-D array of ints named
table
– the array table should have ten rows and

six columns
int[][] table = new int[10][6];

Calculating the Cell Values

Each array element corresponds to the balance for a specific
number of years and a specific interest rate (assuming a starting
balance of $1000):

balance(start-balance, years, rate) = (start-balance) x (1 + rate)years

The repeated multiplication by (1 + rate) can be done in a for loop that
repeats years times.

public static int balance(double startBalance, int years, double rate)

{

double runningBalance = startBalance;

int count;

for (count = 0; count < years; count++)

runningBalance = runningBalance*(1 + rate/100);

return (int) (Math.round(runningBalance));

}

Processing a 2-D Array:

for Loops Nested 2-Deep

•	 Arrays and for loops are a natural fit

•	 To process all elements of an n-

dimensional array nest n for loops
– each loop has its own counter that

corresponds to an index

Processing a 2-D Array:

for Loops Nested 2-Deep

•	 For example: calculate and enter balances in interest

table (10 rows and 6 columns)

– inner loop repeats 6 times (six rates) for every outer loop

iteration
– the outer loop repeats 10 times (10 different values of
years)

–	so the inner repeats 10 x 6 = 60 times = # cells in

table

int[][] table = new int[10][6];

int row, column;

for (row = 0; row < 10; row++)

for (column = 0; column < 6; column++)
table[row][column] = balance(1000.00, row + 1, (5 + 0.5*column));

Multidimensional Array Parameters

and Returned Values

•	 Methods may have multi-dimensional array
parameters

•	 Methods may return a multi-dimensional
array as the value returned

•	 The situation is similar to 1-D arrays, but
with more brackets

•	 Example: a 2-D int array as a method
argument

Multidimensional Array Parameters

and Returned Values

Number of rows of a 2D array is: nameOfArray.length
Number of columns for each row is:

nameOfArray[row-index].length

public static void showTable(int[][] displayArray)
{

int row, column;

for (row = 0; row < displayArray.length; row++)

{

Notice how the number
of rows is obtained

System.out.print((row + 1) + " ");

 for (column = 0; column < displayArray[row].length

Notice how the number
of columns is obtained

; column++)

 System.out.print("$" + displayArray[row][column] + " ");

 System.out.println();

}

}

Ragged Arrays

•	 Ragged arrays have rows of unequal length

– each row has a different number of columns, or
entries

•	 Ragged arrays are allowed in Java

•	 Example: create a 2-D int array named b with

5 elements in the first row, 7 in the second row,
and 4 in the third row:
int[][] b;

b = new int[3][];

b[0] = new int[5];

b[1] = new int[7];

b[2] = new int[4];

Packages

•	 A way of grouping and naming a collection

of related classes
– the classes in a package serve as a library of

classes
– they do not have to be in the same directory as

the code for your program

•	 The first line of each class in the package
must be the keyword package followed by
the name of the package

Packages

Example -- a group of related classes that
represent shapes and methods for drawing them:

package graphics;
public class Circle extends Graphic {

. . .
} // in Circle.java

package graphics;
public class Rectangle extends Graphic {

. . .
} // in Rectangle.java

package graphics;
public class Ellipse extends Graphic {

. . .
} // in Ellipse.java

Packages

•	 To use classes from a package in program source
code, can put an import statement at the start
of the file, e.g.:
import graphics.*;
– note the ".*" notation, "*" is a wild-card that

matches all class names in the graphics package;
in our example, it is shorthand for graphics.Circle,
graphics.Rectangle, and graphics.Ellipse

•	 Class descriptions with no package statement
are automatically placed in a default package (a
package with no name)

Packages

•	 Use lowercase letters for the package name

•	 By using packages if we write a new class description

that has the same name as a built-in Java class, we can
avoid problems

•	 java.awt has a Rectangle class
– to refer to it by its full name: java.awt.Rectangle

•	 graphics package has a Rectangle class
– to refer to it by its full name: graphics.Rectangle

•	 To use java.awt and graphics Rectangle packages in the
same code, can use their full names (which includes
their package name)

Packages

• In directory c:jdk\lib\examples\graphics have

package graphics;

public class Rectangle {

private double length=5.5;
private double width=4.0;

{
return length*width;

}
} // Rectangle.java

package graphics;

public class Circle {

private double radius=5;

public double getArea()
{

return Math.PI *
radius * radius;

}
} // Circle.java

public double getArea()

Packages

• In directory c:jdk\lib\examples\test have

package test;

import graphics.*; // import graphics.Rectangle and graphics.Circle

public class TestGraphics

{

public static void main (String[] args) {
Rectangle r1 = new Rectangle();
System.out.println("Rectangle area is " + r1.getArea());
Circle c1 = new Circle();
System.out.println("Circle area is " + c1.getArea());

} // end of main ()

}

Packages

•	 Pathnames are usually relative and use the CLASSPATH

environment variable
DOS
•	 If: CLASSPATH=c:jdk\lib\examples, and the classes in

your graphics package are in
c:jdk\lib\examples\graphics\, and your test
program is in package test in
c:jdk\lib\examples\test\TestGraphics.java
From the DOS command line in c:jdk\lib\examples,
can type javac test\TestGraphics.java to compile
and java test.TestGraphics to run
Output:

Rectangle area is 22.0
Circle area is 78.53981633974483

Packages

Unix/Linux

•	 If: CLASSPATH=/name/lib/examples, and the classes in

your graphics package are in
/name/lib/examples/graphics/, and your test
program is in package test in
/name/lib/examples/test/TestGraphics.java

From the unix/linux command line in

/name/lib/examples, you can type

javac test/TestGraphics.java to compile

and java test.TestGraphics to run

Output:

Rectangle area is 22.0

Circle area is 78.53981633974483

Inheritance

•	 OOP is one paradigm that facilitates managing the

complexity of programs
•	 OOP applies principles of abstraction to simplify the

tasks of writing, testing, maintaining and understanding
complex programs

•	 OOP aims to increase code reuse

– reuse classes developed for one application in other
applications instead of writing new programs from
scratch ("Why reinvent the wheel?")

•	 Inheritance is a major technique for realizing these
objectives

Inheritance Overview

•	 Inheritance allows you to define a very general
class then later define more specialized classes
by adding new detail
– the general class is called the base or parent class

•	 The specialized classes inherit all the
properties of the general class
– specialized classes are derived from the base class

– they are called derived or child classes

Inheritance Overview

•	 After the general class is developed you only
have to write the "difference" or
"specialization" code for each derived class

• A class hierarchy: classes can be derived from
derived classes (child classes can be parent
classes)
– any class higher in the hierarchy is an ancestor

class
– any class lower in the hierarchy is a descendent

class

An Example of Inheritance:

a Person Class

The base class:
• Constructors:

– a default constructor
– three others that initialize the firstName,
lastName, and dateOfBirth attributes (instance
variables)

• Accessor methods:

– setFirstName to change the value of the

firstName attribute

– getFirstName to read the value of the

firstName attribute

– same for lastName

An Example of Inheritance:

a Person Class

Accessor methods contd.:

– setDateOfBirth to change the value of the

dateOfBirth attribute

– getDateOfBirth to read the value of the

dateOfBirth attribute

– writeOutput to display the values of the firstName,
and lastName attributes

•	 One other class method:

– sameName to compare the values of the firstName and
lastName attributes for objects of the class

•	 Note: the methods are public and the attributes
private

Derived Classes: a Class Hierarchy

Person

Student Employee

Faculty StaffUndergraduate Graduate

MastersDegree NonDegreePhD

•	 The base class can be used to implement specialized classes
–	 For example: student, employee, faculty, and staff

•	 Classes can be derived from the classes derived from the base class,
etc., resulting in a class hierarchy

Example of Adding Constructor

in a Derived Class: Student

public class Student extends Person
{

private int studentNumber;
public Student()
{

super();
studentNumber = 0;

}
…

z Keyword extends in
first line
»

class
»

creates derived
class from base

this is inheritance

• Four new constructors (one on next slide)
– default initializes attribute studentNumber to 0

• super must be first action in a constructor definition

– Included automatically by Java if it is not there

– super()calls the parent default constructor

Example of Adding Constructor

in a Derived Class: Student

•	 Passes parameter fName to constructor of parent class

•	 Uses second parameter to initialize instance variable that
is not in parent class.

public class Student extends Person
{
. . .

public Student(String fName, int newStudentNumber)
{

super(fName);
studentNumber = newStudentNumber;

}
. . .

More about

Constructors in a Derived Class

• Constructors can call other constructors
• Use super to invoke a constructor that is

defined in the parent class
– as shown on the previous slide

• Use this to invoke a constructor that is

defined within the derived class itself

– shown on the next slide

Example of a constructor using this

–	 calls the constructor with three arguments, fName, lName (String) and 0
(int), within the same class

public Student(String first, String last)
{

this(first, last, 0);
}

Student class has a constructor with three parameters: String for the
firstName and lastName attributes and int for the studentNumber
attribute
public Student(String fName, String lName,

int newStudentNumber)
{

studentNumber = newStudentNumber;
}

Another constructor within Student takes two String arguments and
initializes the studentNumber attribute to a value of 0:

super(fName, lName);

Example of Adding an Attribute in

a Derived Class: Student

A line from the Student class:
private int studentNumber;

• Note that an attribute for the student
number has been added
–Student has this attribute in addition to
firstName, lastName, and
dateOfBirth, which are inherited from
Person

Example of Overriding a Method in

a Derived Class: Student

•	 Both parent and derived classes have a writeOutput method
•	 Both methods have the same parameters (none)

–	 they have the same signature
•	 The method from the derived class overrides (replaces) the

parent's
•	 It will not override the parent if the parameters are different (since

they would have different signatures)
• This is overriding, not overloading

public void writeOutput()
{

System.out.println(“Name: “ + getFirstName() + “ “ +
getLastName());

System.out.println("Student Number : " +
studentNumber);

}

Call to an Overridden Method

• Use super to call a method in the parent class that was

overridden (redefined) in the derived class
•	 Example: Student redefined the method writeOutput

of its parent class, Person
•	 Could use super.writeOutput() to invoke the

overridden (parent) method

public void writeOutput()
{

super.writeOutput(); // prints first and last name
System.out.println("Student Number : " +

studentNumber);
}

Overriding Verses Overloading

Overriding

•	 Same method name

•	 Same signature
•	 One method in

ancestor, one in
descendant

Overloading

•	 Same method name

•	 Different signature

•	 Both methods can be
in same class

The final Modifier

•	 Specifies that a method definition cannot be

overridden with a new definition in a derived class
• Example:

public final void specialMethod()

{

. . .

}

•	 Used in specification of some methods in standard
libraries

•	 Allows the compiler to generate more efficient code

•	 An entire class can be declared final, which means it
cannot be used as a base class to derive another class

private & public

Instance Variables and Methods

• private instance variables from the parent
class are not available by name in derived
classes
– "Information Hiding" says they should not be

– use accessor methods to change them, e.g. can call

parent’s setFirstName method for a Student
object to change the firstName attribute

• private methods are not inherited!
– use public to allow methods to be inherited
– only helper methods should be declared private

What is the "Type" of a Derived class?

•	 Derived classes have more than one type

•	 They have the type of the derived class (the

class they define)

•	 They also have the type of every ancestor class

– all the way to the top of the class hierarchy

•	 All classes derive from the original, predefined

Java class Object

• That is, 	Object is the original ancestor class

for all other Java classes (including user-defined

ones)

Assignment Compatibility

• Can assign an object of a derived class to a
variable of any ancestor type
Person josephine;
Employee boss = new Employee();
josephine = boss; OK

• Can not assign an object of an ancestor class to
a variable of a derived class type
Person josephine = new Person();
Employee boss;

boss = josephine; Not allowed

Person

Employee

Person is the
parent class of
Employee in
this example.

An employee is a person but a person is not necessarily an employee

Character Graphics Example

Figure

Box Triangle

offset
Methods:
setOffset getOffset
drawAt drawHere

offset height width
Methods:
setOffset getOffset
drawAt drawHere
reset drawHorizontalLine
drawSides drawOneLineOfSides
spaces

offset base
Methods:
setOffset getOffset
drawAt drawHere
reset drawBase
drawTop spaces

Inherited
Overrides
Static

Instance variables:

Instance variables: Instance variables:

Java program execution order

•	 Programs normally execute in sequence

•	 Non-sequential execution occurs with:

– selection (if/if-else/switch) and repetition (while/do-

while/for)
(depending on the test it may not go in sequence)

– method calls, which jump to the location in memory that
contains the method's instructions and returns to the calling
program when the method is finished executing

•	 One job of the compiler is to try to figure out the
memory addresses for these jumps

•	 The compiler cannot always know the address

–	 sometimes it needs to be determined at run time

Static and Dynamic Binding

•	 Binding: determining the memory addresses for jumps
(calls to class methods, etc.)

•	 Static: done at compile time

– also called offline

•	 Dynamic: done at run time

•	 Compilation is done offline

– it is a separate operation done before running a
program

•	 Binding done at compile time is, therefore, static

•	 Binding done at run time is dynamic

– also called late binding

Example of Dynamic Binding:

General Description

• A derived class calls a method in its
parent class which calls a method that is
overridden (defined) in the derived class
– the parent class is compiled separately; in some

cases before the derived class is even written

– the compiler cannot possibly know which address
to use

– therefore the address must be determined (bound)
at run time

Dynamic Binding: Specific Example

Parent class: Figure

– Defines methods: drawAt and drawHere
– drawAt calls drawHere

Derived class: Box extends Figure
– Inherits drawAt
– redefines (overrides) drawHere
– Calls drawAt

• uses the parent's drawAt method
• which must call the derived class's, drawHere method

• Figure is compiled before Box is even written, so the

address of drawHere(in the derived class Box) cannot be

known then

– it must be determined during run time, i.e. dynamically

Polymorphism revisited

•	 Using the process of dynamic binding to
allow different objects to use different
method actions for the same method name

•	 Method overloading is an example of
polymorphism

•	 However, the term polymorphism is most
often used in reference to dynamic binding

Summary

•	 A derived class inherits the instance variables & methods of
the base class

•	 A derived class can create additional instance variables and
methods

•	 The first thing a constructor in a derived class normally does is
call a constructor in the base class

•	 If a derived class redefines a method defined in the base class,
the version in the derived class overrides that in the base class

•	 Private instance variables and methods of a base class cannot
be accessed directly in the derived class

•	 If A is a derived class of class B, then an instance of A (object)
is both a member of classes A and B
–	 the type of the object is both A and B

Read

• Sections 6.3 - 6.5

