24.961 Feature organization-1

[0] originally prosodic features of length and stress were treated as a feature: $[\pm long]$, $[\pm stress]$ but this raised a number of problems

- length is never assimilated (though it can be compensated, see below)
- geminates behave like a sequence of two segments for prosodic rules but like a single segment for segmental rules
- the solution suggested was to enrich the representation by positing an internal structure on the features comprising the segment sketched in [1]

[1]	prosodic terminals	Х	Х	Х	Х	Х	timing tier
			I				
	root node	0	0	0	0	0	root node
				\setminus	/		
		labial	dorsal	corc	onal	dorsal	major articulator
	[-voice	2]					
		[+	low]				terminal features (incomplete)
			[+n	asal]			
					[-co	ntin]	
						[+]	pack]
		[p]	[a] [n] [d]	[a]	

[2] Long vs. short segments: representation as one root node linked to two successive timing slots; X denotes units of abstract phonological duration

Italian	pane	panna	Х	Х	Х
	'bread'	'cream'		\backslash	/
			0	C)
			I		
			n	I	1

- [3] Kenstowicz (1970), Leben (1973)
 - Geminates behave like a sequence of two segments for prosodic rules but like a single segment for segmental rules
 - Lengthening of stressed vowel in Italian before single consonant but blocked by a cluster like nt or a geminate like tt: pa:ne, can.to can.na
 - Two light syllables ≈ one heavy syllable in Latin stress rule where stress falls on the antepenult if the penult is light but on the penult when it is heavy; both a long vowel

as well as a geminate consonant make the syllable heavy: 'hominis 'man' gen. sg. but argu'mentum 'argument', for'tūna 'luck', pu'ella 'girl'

- Palatalization of [s] in Japanese: *si boji hat ajji chauffeur
- West Greenlandic Eskimo: /i,u,a/; high vowels lower word-finally or before a uvular; applies to both short and long vowels (Pyle 1970) /puguq-t/ 'bags' -> pugqu-t > puggut but /puguq/ -> puuq > po:q 'bag'
- Finnish vowel harmony affects long and short vowels

kään-tää	'to turn'	tykä-tä	'to like'
mur-taa	'to break'	halu-ta	'to want'

- Assuming that the timing tier interfaces with prosodic phonology while the features under the root node form the representations for segmental phonology then Japanese /bosi/ 'hat' and /assi/ 'chauffeur' are properly distinguished as long vs. short for accent but as just a single /s/ for palatalization
 - X X X | \∕ s s

[4] geminate integrity

• Epenthesis in C_CC is blocked if it would split a geminate; Guerssel (1978) Berber

s-wudi	sə-tmaziyt	sə-zzit	but	tazzla	sslil
'with butter'	'with Berber'	'with oil'		'running'	'to rinse'

*Fission: penalize correspondence between a single root node in the input with multiple root nodes in the output

*Complex Onset/Coda, Dep-V

/s-tmaziɣt/	*Complex	Dep-V
> sətmaziyt		*
stmaziyt	*!	
/s-zzit/		
>səzzit		*!
szzit	*!	
/tazzla/	*Fission	*Complex
> tazz.la		*
tazəzla	*!	

[5] Complete assimilation as single root node sharing two (or more) successive timing slots

Tigrinya (Schein 1981, Kenstowicz 1982)

• a velar stop is spirantized after a vowel; geminate stops resist the change

/klb/ kälbi 'dog' ?a-xaləb 'dogs' /rkb/ räxäb-ä 'he found' mə-rkab 'to find' yə-räkkəb 'he finds'

• heteromorphemic /k + k/ spirantizes

/mərak-ka/ -> məraxka 'your calf'

 active and passive verbs: passive prefix tä- syncopates in jussive and /t-/ assimilates to following consonant

active perfective	räxäb-ä	passive perfective	tä-räxb-a	'find'
active jussive	yə-rkäb	passive jussive	yə-r-räxäb	

• complete assimilation: instead of cumbersome change of all features to agree with following segment, the process can be expressed simply as a reassociation of the timing slot X of the prefix with the root node o of the following consonant:

skeletal tier	Х	Х	
	÷	\setminus	
root node	0	0	
	I	I	
	t	r	

• correctly predicts no spirantization of root-initial velar stop even though it is heteromorphemic

active perfective	käfät-ä	passive perfective	tä-xäft-a	'open'
active jussive	yə-xfät	passive jussive	yə-k-käfät	

- the distribution of single vs. double (multiple) linking becomes a major question (discussed under label of "OCP" Obligatory Contour Principle" (Leben 1973))
- [6] Berber-2 (geminate integrity, Guerssel 1978)
 - genitive prefix n- completely assimilates to a following sonorant

n-taddart 'house' l-litub 'book' w-wadu 'wind'

- breakup of a geminate (multiply-linked segment) is blocked by fission: / w-wtəm/ maps to [wwtəm] and not to [wəwtəm]
- nə-trattʃa 'net' nə-bnadəm 'human'
- l-lwiski 'wiskey' w-wtəm 'male'

/n-wtəm/	*fission	*n [+sonorant]	Dep-V	Max,Dep-Assoc
> wwtəm				**
nwtəm		*!		
nəwtəm			*!	
wəwtəm	*!			

[7] Speech disguises and slips of the tongue typically permute all the features of a segment: expressed as displacement of the root node; (cf. movement of a syntactic constituent)

Arabic root permutation (Al-Mouzaini 1980)

 $\langle \delta^{c} r b \rangle$ 'hit' $\delta^{c} a r a b \rightarrow riba \delta^{c}$, $b i \delta^{c} a r$, $\delta^{c} i b a r$, $b a r a \delta^{c}$, etc.

[8] empty slots and floating segments

Tiberian Hebrew definite proclitic: geminates a following oral consonant (ham-melek 'the king') but not a guttural (haa-9iir 'the city')

*GG » *VV » CC

(*GG = penalize a geminate guttural)

*unassociated X

/haX-melek/	*unassociated X	*VV	*CC
> hammelek			*
haX-melek	*!		
haa-melek		*!	
/haX-9iir/	*GG	*unassociated X	*VV
> haa-9iir			*
ha-9iir		*!	
ha-99iir	*!		

French liaison consonants (Clements & Keyser 1983)

un gros chat $[gRo. \int a]$ 'a big cat'

groz∫a	grozurs
XXX XX	X X X X X X X X

 $\langle z \rangle$ = segment not associated to an X-slot

/ gro <z> chat/</z>	Dep-X
> gro <z> ∫a</z>	
groz ∫a	*!

Onset: penalize syllables without an onset

/ gro < z > ours/	Onset	Dep-X	Dep-C
>gro .z urs		*	
gro <z>.urs</z>	*!		
gro <z>.turs</z>		*	*

- insertion of epenthetic element is harmonically bound by vocalization of floating segment
- distribution of liaison consonant motivated by Onset » Dep-X

[9] An alternative to X-slots as a model of timing is traditional notion of mora (Hyman 1985, Hayes 1989)

• heavy syllable contains two moras and light syllable one

σ	σ	σ	σ	σ σ	
			N	\ /	
μ	μμ	μμ	μ	μμ μ	
	/			/	
t a	t a	tan	pane	pana=[pa	anna]

- For Hayes a geminate consonant is associated to the second mora of the first syllable and to the onset of the following syllable; for Hyman the onset and nuclear vowel associate to the same mora
- Latin Stress: Pe.ne.lo.pe, Ra.mo:.na, A.man.da
- the penultimate syllable is monomoraic in the first but bimoraic in the latter two

[10] Compensatory Lengthening (Hayes 1989)

Loss of a segment is compensated by lengthening adjacent segment

• Most common is loss of coda consonant leading to long vowel

Latin kas.nus > ka:nus 'gray-haired'

• Lower sonority consonants may fail to induce Compensatory Lengthening

Greek ke-komid-ka > kekomika (no CL)

• Rarely does onset loss lead to CL; mora theory designed to explain this asymmetry

Greek newos > neos, not ne:os or neo:s

- Modeled as Max-mora in OT
- see Yun (2012) for typology of CL

[11]. Some reservations about moras

• Languages like Kashmiri and Hindi have more than two degrees of length

Hindi: CVVCC > CVVC > CVC > CV (Gordon 1999)

• Tranel (1991): languages may have light geminates, as in Selkup;

Stress on rightmost heavy or else initial: qumó:qi, ámirna, u:cikkak

 coda sonorants increase duration of preceding vowels in many languages (Bantu NC, English liquids Katz 2010)

French consonnes d'allongements: vowels longer before continuants and sonorants

- When a consonant is present, the extra duration is due to coda consonant and listener ignores it; but when the coda is deleted then extra duration is noticed and vowel is categorized as long; under this scenario moras are not needed (Steriade 2007)
- Syllable-initial geminates found in a number of languages (Topintzi, Shinohara)

Southern Ryukyu Japanese (Shinohara & Fujimoto 2011)

kkara 'strength' ssa 'grass'

- Tonal contour: first mora L and then rise up to accent where a sharp fall: L...LHL
- kata'na LHL 'knife' suu'ru LHL 'head'
- initial geminate words have H on first vowel: ssu'ru HL 'medicine'
- thus here initial geminate yields a timing unit
- minimality: CV lengthened in phrase to give a phonological word longer than CV: /mi/ > mii 'eye' but no vowel lengthening with initial geminates: ssa H 'grass'
- initial geminates derive historically from loss of vowel: kusa > ssa 'grass', tikara > kkara 'strength'

Selected References

- Al-Mozainy, Hamza. 1982. The Phonology of a Bedouin Hijazi Dialect. University of Texas Ph.D. dissertation.
- Clements, George N. & S.J.Keyser. 1983. CV Phonology. Cambridge: MIT Press.
- Guersell, Mohammed. 1978. A condition on assimilation rules. Linguistic Analysis 4, 225-54.
- Hayes, Bruce. 1989. Compensatory lengthening in moraic phonology. Linguistic Inquiry 20, 253-306.
- Hyman, Larry. 1985. A Theory of Phonological; Weight. Foris Publications.
- Kenstowicz, Michael. 1970. On the notation of vowel length in Lithuanian. Papers in Linguistics 3, 73-113.
- Kenstowicz, Michael. 1982. Gemination and sprirantization in Tigrinya. Studies in the Linguistic Sciences 12,1; 103-22. [University of Illinois, Dept. of Linguistics]

Leben, William. 1973. Suprasegmental Phonology. MIT Ph.D. dissretation.

Schein, Barry. 1981. Spirantization in Tigrinya. MIT Working Papers in Linguistics 3.

Shinohara, Shigeko and M Fujimoto. 2011. Moraicity of initial geminates in the Tedumuni dialect of Okinawa. Proceedings of the 17th International Congress of Phonetic Sciences, Hong Kong, 1842-45. Yun, Suyeon. 2012. The typology of compensatory lengthening. CLS 46.

24.961 Introduction to Phonology Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.