1. general features

- · richer inventory of levels and shapes
- Chao notation: 5 denotes top of pitch space and 1 the bottom
- impoverished morphology; but tonal changes (sandhi) when lexical items combine to form compounds and grammatical phrases
- autosegmental behavior in which contour tones decompose into L and H components

Cantonese (Yip 2003)					Mandarin			
si	i:	55	'poetry'	ma	55	'mother'		
Si	i:	44	'try, taste'	ma	35	'hemp'		
Si	i:	33	'affair'	ma	214	'horse'		
Si	i:	22	'time'	ma	51	'scold'		
si	i:	35	'make'					
si	i:	24	'market'	/fei55 +	·le/ ->	55 + L	'fly' asp	
si	i:	53	'silk'	/lai35 +	le/	35 + L	'come' asp	
				/mai214	1 +le/	21 + H	'buy' asp	
				/lei51+l	e/	53 + L	'tire' asp	

Contextual tonal variations

Figure 2. Mean f_0 contours (averaged over speakers and tokens; n = 48) of four Mandarin tones in the monosyllable /ma/ produced in isolation. The time is normalized, with all tones plotted with their average duration proportional to the average duration of Tone 3.

Xu, Yi. "Contextual Tonal Variations in Mandarin." *Journal of Phonetics* 25, no. 1(1997): 61-83. © Elsevier. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Xu, Yi. 1997. Contextual tonal variations in Mandarin. J of Phonetics 25, 61-83.

2. Shanghai compounds (Duanmu '97):

HL LH LH	LH LH LH	input
HLL	LHL	output
ci ve ti	lo ve ti	
new meal store	old meal store	
'new restaurant'	'old restaurant'	

- initial syllable is stressed; tones of noninitial syllable are deleted
- contour tone of initial morpheme is reparsed over the entire phrase
- · recall Kagoshima Japanese

2. Tonogenesis (Haudricourt 1954, Matisoff 1973)

Fo is lower after voiced obstruents: voicing contrast lost and F0 difference is phonologized.

- Punjabi tones (Bhatia 1975)
- low tone following former voiced aspirates and high tone preceding them

<u>Hindhi</u>	<u>Punjabi</u>	
ghor-a	kòra	'horse'
dhol	tòl	'drum'
labh	lab	'profit'

• tone attracted to stressed syllable

(70)	High tone			
	/pár/	'study' (verb)	Low tone	
	¹pár.na:	'to study'	/bàn/	'tie' (verb)
	¹pá.ӷт.a:	'studied' (masc.sg.)	'bàn.na:	'to tie'
	pə.ˈʈáːiː	'studies' (noun)	'bàn.ni:	'tied' (fem.sg.)
	pə.¹rá:ɔ:	'cause to study'	bə.¹nà:ɔ:	'help tie'

Bhatia, Tej K. "The Evolution of Tones in Punjabi." *Studies in the Linguistic Sciences* 5, no. 2 (1975): 12-24. © University of Illinois. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

3. Chinese: register

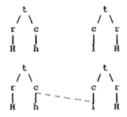
Songjiang (Shanghai):	53	44	35	5	yin register
	31	22	13	3	yang register

- fall, level, and rising tones in upper and lower regions of pitch space
- checked syllables with ? coda bar contour tones
- yang register not found after voiceless consonants
- yin register not found after voiced obstruents
- contrast after sonorants

4. Bao's (1990, 1999) representation

- [±stiff vocal folds] splits pitch space into two broad regions; [±slack vocal folds] lowers or raises pitch within each register
- predicts four tone levels (mid is ambiguous in three tone system)
- contour tones as units but with internal parts: F = [1h], R = [h1]; evidence from
 - o register changes and contour changes independent
 - o contour decomposition
 - o terminal assimilation
 - o contour shift and spread

4. Gao'an (Mandarin) (Bao: 1990 110)


```
a. 55: ka "add"; siu "repair"
A. 24: siu "rest"
b. 42: hou "beg"
c. 33: p'i "match"; su "four"
C. 11: p'ei "double"; t'i "earth"
d. 3: tsok "table"
D. 1: hok "study": giak "stope"
```

Bao, Zhiming. "On the Nature of Tone." Ph. D. thesis. Massachusetts Institute of Technology. 1990. © Zhiming Bao. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

in sandhi 55 b-> 53 / ____ 33,11,3,1

sam su 'three-four' ka p'Ei 'double' sang t'iet 'pig iron' tciang yot 'first month' 55-33 -> 53-33 55-11 > 53-11 55-3 > 53-3 55-1 > 53-1

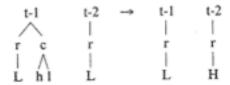
• original register maintained; just addition of 1 component; hence 55 > 53, not 51 which would be crossing a register boundary

typo: second tone is in L register; hence r ---L

Bao, Zhiming. "On the Nature of Tone." Ph. D. thesis. Massachusetts Institute of Technology. 1990. © Zhiming Bao. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- 5. Tibetan compounds (Meredith 1989): WS metrical structure; T₁ deletes r node, T₂ changes r to H
 - isolation: 55, 24 (from /22/), 52, 31: a level and fall in the upper and lower registers

compounds


input			compound	
first syllable	second syllable	⇒	first syllable	second syllable
H-level H-fall L-level H-fall H-level L-fall H-level L-fall H-level H-fall L-level L-fall L-level L-fall H-level	H-level H-level H-level H-fall H-fall H-fall L-level L-level L-level L-fall L-fall L-fall		H-level L-level L-level H-level L-level L-level L-level H-level H-level L-level L-level L-level L-level	H-level H-level H-level H-fall H-fall H-fall H-level H-level H-level H-level H-fall H-fall H-fall

examples

```
phòō 2 'Tibet'
mi 2 'person'
phòō-mi 2-5 'Tibetan'
thuu 52 'banner'
caa 52 'iron'
thuu-caa 5-52 'iron banner fixture'
ree 31 'cotton'
see 2 'robe'
ree-see 2-5 'cotton robe'
yum 2 'mother'
chēē 5 'great'
yum - chēē 2-5 'mother' (honorific)
see 52 'knowledge'
yōō 2 'possessor'
see yōō 5-5 'intellectual'
```

analysis: WS metrical structure; T₁ deletes c node, T₂ changes r to H

Kenstowicz, Michael. *Phonology in Generative Grammar*. Blackwell Publishing, 1994. © Blackwell Publishing. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Kenstowicz, Michael. Phonology in Generative Grammar. Blackwell Publishing, 1994. © Blackwell Publishing. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

6. dissimilation by shape and register: (Bao 1999) Yantai (Mandarin, Shandong province)

		H, lh - 1 H, lh	L, hl L,hl	L, hl - I H, h -	_, lh L, lh	L, hl - H L, lh - H	′	
	55	55-31		55-214		31-55		
	214	35-31		55-214		214-55		
	31	35-31		31-214		31-55		
		31		214		55		
			c. 55-55	5	31-55		cy p'i	'tree bark'
			b. 214-2		55-214		y sui	'rain water'
•	sandhi:		a. 31-31	l ->	35-31		san p'o	'hill slope'
•	invento	ry	a. 31 b. 214 c. 55	fu fa t'u	'man' 'method 'picture'		L, hl L, lh H, h	

observations

H, h

- first tone changes: Ident-tone in stressed syll >> Ident-tone
- 31-31 -> 35-31: dissimilation for register and contour
- 214-31 -> 35-31: dissimilation for register

H, hl H, h - L, lh

214-214 -> 55-214: dissimilation for register; structure preservation: upper register lacks

L, hl - H, h

 $55-55 \rightarrow 31-55$: dissimilation for register and contour; *R >> *F

analysis: Ident-Tone-Stressed syll >> Ident-Tone

OCP-contour >> Linearity

OCP-register >> Ident-register

*[H, hl] >> *[L,l]: blocks creation of a high fall (53) as repair for 214-214; is 55-214 closer to input than 53-214?

7. Pinyao (Bao 1999; data from Hou 1980)

13 35 53	ti ti ti	'paw' 'field' 'top'		L, lh H, lh H, hl	
55	13	•	35	11, 111	53
13	13-13	(31-35		35-423
35	13-13	(31-35		35-423
53	53-13	-	53-35		35-423
35_\ 13	1/ 13	spread of	I regist	er	

35-> 13 / __ 13 spread of L register

13 -> 31 / __ 35 dissimilation of contour (novel tone)

35 -> 31 / __35 dissimilation of contour and register

13 -> 35 / ____ 53 spread of H register

 $53 \rightarrow 35 / _ 53$ dissimilation of contour

• the upper register rise 35 and fall 53 trigger contour dissimilation

OCP on c node if T2 is H

• a rising tone assimilates the register of the second tone

- a fall [hl] adds a h before pause (blocked on rise or h by OCP)
- 8. While rise and fall can be unrestricted in distribution, convex and concave tones with two inflection points are typically derived: recall Mandarin T3 plus toneless syllable: suggests fall+high. Suzhou (Yip 1989): decomposition of convex and concave tones; full form is phrase-final where syllable is typically lengthened

keu 523 i 523 -> keu 52 i 44 third tone realized on second syllable: HLH HLH > mo 242 ko 523 -> mo 23 ko 11 HLH 0 > HL H

9. gross typology

- tone sandhi often dissmilatory; changes first of two similar/identical tones
- tone deletion: noninitial (Shanghai) left-edge stress; nonfinal (Xiamen) right-edge stress
- tone shift: preserve initial tone but realize on right edge (Zhenhai); preserve final tone but realize on initial (Wenzhou)
- 10. Zhenhai (Northern Wu) (Rose 1990, Li 2003) inventory and representation

		tone	example	tone value	notation	gloss
long tone	high	1	tçi	441	HL	"to fill"
	register	2	tçi?	323	MH	"chicken"
	low	3	tçi	231	ML	"to ride"
	register	4	tçi?	213	LM	"he/she/it"
-	high register	5	tçı?	5	H?	"knot"
	low register	6	tçe?	<u>23</u>	L?	"straight"

Li, Zhiqiang. "The Phonetics and Phonology of Tone Mapping: A Constraint-Based Approach." Ph. D. dissertation. Massachusetts Institute of Technology, 2003. © Zhiqiang Li. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

	long	short	tone		
HL	MH	ML	LM	H?	L?
tone 1	tone 2	tone 3	tone 4	tone 5	tone 6
$ \wedge $	\wedge	\wedge	\wedge	\wedge	\wedge
r c	r c	r c	r c	r c	r c
$ \wedge $	$ \cdot \rangle$	$ \wedge $		1 1	1 1
h H L	hLH	1 H L	1 L H	h H	1 L

Li, Zhiqiang. "The Phonetics and Phonology of Tone Mapping: A Constraint-Based Approach." Ph. D. dissertation. Massachusetts Institute of Technology, 2003. © Zhiqiang Li. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• contour tones have CVV(?), CVN syllable durations of (250-350 ms); checked CV? (100 ms.)

- upper register have voiceless onset, lower register voiceless breathy onset that becomes voiced non-initially
- sandhi in compounds (disyllabic or longer)
- two metrical patterns: WS and SW partially predictable:
 - if σ_1 in H register (tone 2,5) then SW; if σ_1 in L register (tone 3,6) then WS
 - o if σ_1 is Tone 1 or 4 then WS/SW is synchronically unpredictable
- V1 is longer (94 to 154 ms) than V2 regardless of metrical pattern; thus two prominences: duration for σ_1 and stress for WS/SW;
- no duration increase on checked syllables

tone sandhi changes in W-S (p. 121)

W-S disyllabic patterns

σ_{l}		σ ₂						
		T1:441	T2:323	T3:231	T4:213	T5:5	T6:23	
Α	T1:441	33-441			33-4			
В	T3:231		11-441			1	1-4	
С	T4:213	11-334		11-24		11-4		
D	T6:23	1-441	1-35	1-242	1-114	1-4	1-25	

A. "spring"	"western calend	dar"
tshyŋ thĩ	çi lı?	
441-441	441- <u>23</u>	citation tone
33-441	33- <u>4</u>	sandhi tone
B. "coal mine"	"hair"	
mei khwā	tœy fa?	
		altation tono
231-231	231- <u>5</u>	citation tone
11-441	11- <u>4</u>	sandhi tone
C. "place"	"yesterday"	
ti fã	sã ní?	
213-441	213-23	citation tone
11-334	11- <u>4</u>	sandhi tone
D. "tongue"	"special"	
çε tœy	ta pe?	
23-231	23-5	citation tone
1-242	1-25	sandhi tone

Li, Zhiqiang. "The Phonetics and Phonology of Tone Mapping: A Constraint-Based Approach." Ph. D. dissertation. Massachusetts Institute of Technology, 2003. © Zhiqiang Li. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- in A and B σ_2 has a falling contour while in C it is rising; corresponds to underlying contour of σ_1
- the register of σ_2 is H regardless of input; the register of σ_1 is H for A and \overline{L} for B and C. this reflects the register of the input tone.

- so in WS the contour node of σ_1 is attracted to the stressed syllable, the stressed syllable is in the upper register (recall Tibetan); the register of the first syllable is determined by the underlying tone of that syllable.
- when σ_1 is short T6 then σ_2 preserves its contour specification but changes to the H register

Summary:

- stressed syllable is tonally prominent: H register and contour tone
- when both σ_1 and σ_2 are contour, the tone of σ_1 is preserved (it is longer in input) but realized on stressed syllable
- register specification is stable on initial syllable
- positional faithfulness for σ_1
- positional markedness for contour node: realized on stressed syllable

Selected References

Bao, Zhiming. 1999. The Structure of Tone. Oxford University Press.

Bhatia, Tej. 1975. The evolution of tones in Punjabi. Studies in the Linguistic Sciences 5,2, 12-24.

Duanmu, San. 1996. Shanghai compounds. Language

Li, Zhiqiang. 2003. The Phonetics and Phonology of Tone Mapping: a Constraint-based Approach. MIT Ph.D. diss.

Meredith, Scott. 1990. Issues in the Phonology of Prominence. MIT Ph.D. dissertation.

Yip, Moira. 2003. Tone. Cambridge University Press.

MIT OpenCourseWare http://ocw.mit.edu

24.961 Introduction to Phonology Fall 2014

For information about citing these materials or our Terms of Use, visit: $\frac{\text{http://ocw.mit.edu/terms.}}{\text{http://ocw.mit.edu/terms.}}$