E.A. (Gene) Fitzgerald *MIT*

LEARNING CURVES: IGNORE THEM AT YOUR OWN PERIL!

WHAT IS A LEARNING CURVE?

- > Exponential growth due to feedback
- Individual, but macro effects are multi-person
- > Pseudonyms
 - + Network Effect
 - + Viral
 - + "Free Market"

EXAMPLES IN ELECTRONICS/INFORMATION

Images removed due to copyright restrictions. Please see: Countdown to Singularity Moore's Law - The Fifth Paradigm Random Access Memory Magnetic Storage Data From Kurzweil, Ray. "The Law of Accelerating Returns." KurzweilAI, March 7, 2001.

HOW DOES A LEARNING CURVE WORK?

- Iterative Innovation
 - + Technology (understanding old and new principles)
 - + Application (wants, needs: computing power per \$)
 - + Implementation (how things are made; how can they be made in future; how to make economically viable; societal and politic influences)
- Important to Recognize:
 - + We all "Stand on the Shoulders of Others"
 - + Self-correcting (don't fret 'bad actors', unless they are fascists!)
 - + Do not ignore either innovation process or historical learning curves
 - Innovation does not happen in a room by yourself
 - Fighting progress of mankind is not useful

EXAMPLE OF IMPORTANCE OF RECOGNIZING GLOBAL LEARNING CURVES

- Premise: Roll-to-Roll Electronics
- It is the new paradigm
 - + Print electronics like newspaper, on plastics
 - + Inexpensive, new manufacturing paradigm
- > But how does it fit into current paradigm quantitatively?
 - + How do we make current electronics?
 - + How do other planar processes work? Is there a common framework to analyze?
- Interesting planar process industries
 - + Solar
 - + Batteries (roll-to-roll)
 - + Silicon CMOS Electronics
 - + LCD Display Screens

	3/4/10	
	Sunpower	Evergreen Solar
Form factor	SPR-200 (200W) 1560 mm x 800 mm 1.25 m2 160 w/m2	EC-100 (100W) 1575 mm X 686 mm 1.08 m2 92.6 w/m2
Sunpower Advantage		
Module efficiency factor	1.73	1.0
Cell efficiency (%)	21.5% (A-300 cell)	15% (cell)
Cell efficiency factor	1.43	1.0
Estimated Mfg Cost s/w	\$2.74/W	\$2.50/W
Estimated Selling price \$ / W	\$4.83/W	\$4.40/W

LOW COST MANUFACTURING?

- 'universal manufacturing cost' at a point in time
 - + Process cost per area per patterning step
 - + Why is there a LCD industry?

SUMMARY OF "LOW COST ELECTRONICS"

- Silicon CMOS defines lowest-cost way to build any device with even a modest number of patterning levels
- LCD infrastructure exists since the display at any time in history has required larger substrate area than the available silicon wafer area
- At any point in time, there is a manufacturing cost to beat defined by cost per area per patterned level
- Less expensive Large Area Electronics requires extremely high speed, fairly high resolution, aligned patterning capability

EXAMPLE 2: SOLAR CELLS SOLAR BAND ENGINEERING: EFFICIENCY AND HIGH COST LEADER

EXAMPLE 2: SOLAR CELLS

 Our activities are composed of projects meant to increase efficiency on a siliconbased platform

HIGHER-LEVEL LEARNING CURVES

- If Innovation is a group sport, what about the 'lone inventor'?
 - + Kuhn, "Structure of Scientific Revolutions", introduced term 'paradigm shift'
 - + History is for making paradigm efficient, not for understanding non-linear network effects like the innovation process
- If you need to know everything in science and technology to be effective, then how come an MIT degree has been 4 years for many decades?

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.