MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Practice Exam 3 A

1. Let (\bar{x}, \bar{y}) be the center of mass of the triangle with vertices at (-2, 0), (0, 1), (2, 0) and uniform density $\delta = 1$.

a) (10) Write an integral formula for \bar{y} . Do not evaluate the integral(s), but write explicitly the integrand and limits of integration.

b) (5) Find \bar{x} .

2. (15) Find the polar moment of inertia of the unit disk with density equal to the distance from the y-axis.

3. Let $\vec{F} = (ax^2y + y^3 + 1)\hat{\mathbf{i}} + (2x^3 + bxy^2 + 2)\hat{\mathbf{j}}$ be a vector field, where a and b are constants.

a) (5) Find the values of a and b for which \vec{F} is conservative.

b) (5) For these values of a and b, find f(x, y) such that $\vec{F} = \nabla f$.

c) (5) Still using the values of a and b from part (a), compute $\int_C \vec{F} \cdot d\vec{r}$ along the curve C such that $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$.

4. (10) For $\vec{F} = yx^3\hat{\mathbf{i}} + y^2\hat{\mathbf{j}}$, find $\int_C \vec{F} \cdot d\vec{r}$ on the portion of the curve $y = x^2$ from (0,0) to (1,1).

5. Consider the region R in the first quadrant bounded by the curves $y = x^2$, $y = x^2/5$, xy = 2, and xy = 4.

a) (10) Compute dxdy in terms of dudv if $u = x^2/y$ and v = xy.

b) (10) Find a double integral for the area of R in uv coordinates and evaluate it.

6. a) (5) Let C be a simple closed curve going counterclockwise around a region R. Let M = M(x, y). Express $\oint_C M dx$ as a double integral over R.

b) (5) Find M so that $\oint_C M dx$ is the mass of R with density $\delta(x, y) = (x + y)^2$.

7. Consider the region R enclosed by the x-axis, x = 1 and $y = x^3$.

a) (5) Use the normal form of Green's theorem to find the flux of $\vec{F} = (1+y^2)\hat{\mathbf{j}}$ out of R.

b) (5) Find the flux out of R through the two sides C_1 (the horizontal segment) and C_2 (the vertical segment).

c) (5) Use parts (a) and (b) to find the flux out of the third side C_3 .