18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Name:

1. (a) (10 points) Find a linear differential equation with constant coefficients that has solutions t, e^t and te^t .

(b) (10 points) Prove or disprove that t^4 and t^6 can be solutions of one and the same linear homogeneous differential equation y'' + p(t)y' + q(t)y = 0 on an interval [-1, 1], where p and q are continuous on [-1, 1].

Name:

2. For a certain regular linear differential operator L a basis of solutions of Ly = 0 is given by $y_1(t) = e^{2t}, \qquad y_2(t) = 2t^2 + 2t + 1.$

(a) (10 points) Compute the Wronskian of y_1 and y_2 .

(b) (10 points) Using *variation of parameters*, find a solution of the differential equation $Ly = t^2 e^{2t}$.

Name:

3. (a) (10 points) If the constant *a* is not a root of the polynomial *p* with real coefficients, show that a particular solution of $p(D)y = e^{at}$ is

$$y(t) = \frac{e^{at}}{p(a)}.$$

(b) (10 points) Find a particular solution of

$$(D^4 + D^3 + D^2 + D + 1)y = 33e^{-2t}.$$

Name:

4. (20 points) Find the general solution of

$$y''' + 3y'' + 3y' + y = te^{-t}.$$

Name:

5. Consider the initial value problem

 $y' = 1 + y^2, \qquad y(0) = 0.$

(a) (10 points) Using Picard's iteration method obtain the iterates $y_1(t)$ and $y_2(t)$.

(b) (10 points) Show that the initial value problem has at most one solution in any interval of the form $t \in (-a, a)$.

(c) (extra credits) Find the exact solution y(t) and show that $\lim_{n\to\infty} y_n(t) = y(t)$.