Lecture Topics

Lecture 1

- 1. Opening comments
- 2. Nigeria-Exxon comparison fallacy
- 3. Volume of a pyramid
 - Checking dimensions
 - Checking easy cases
- 4. Integral of $\int_{-\infty}^{\infty} e^{-3x^2} dx$
 - Discussion of dimensions
 - Discussion of exponents

Lecture 2

- 1. Questions from Lecture 1
- 2. Integral of $\int_{-\infty}^{\infty} e^{-3x^2} dx$
 - Introduction of dimensions into integral
 - Calculating the constant: use easy cases
- 3. Method of easy cases: Volume of a truncated pyramid
 - What are some easy cases?

Lecture 3

- 1. Questions from Lecture 2
- 2. Method of easy cases: Volume of a truncated pyramid
- 3. Drag on two falling cones
 - What are some dimensionless groups?
 - How can they be related?

Lecture 4

- 1. Questions from Lecture 3
- 2. Drag on two falling cones
 - Is this low Reynolds number or high Reynolds number flow?
 - How does the drag depend on Reynolds number at each limit?

18.098/6.099 Lecture Topics

Lecture 5

- 1. Skipped Questions from Lecture 4 (will be posted)
- 2. Discretization: How many births in the United States per year?
- 3. Discretization and easy cases: Evaluate the integral of $\int_0^\infty e^{-at} \mathrm{d}t$
- 4. Discretization and dimensions: How high is the atmosphere?
- 5. Historical discussion of the pendulum clock, latitude, and longitude
 - Is $\pi^2 \approx g$ by coincidence or by design?

Lecture 6

- 1. Questions from Lecture 5
- 2. Pendulum
 - How does the period depend on θ_0 ?

Lecture 7

- 1. Questions from Lecture 6
- 2. Picture proofs: What is the sum of n odd numbers starting with 1?
- 3. Picture proofs: Show the arithmetic mean is greater than the geometric mean with equality when a = b
- 4. Picture proofs: What is the shortest path for bisecting an equilateral triangle?

Lecture 8

- 1. Questions from Lecture 7
- 2. Picture proofs: $\ln n!$
- 3. Taking out the big part and picture proofs: Calculate 8.4^2
- 4. Taking out the big part: Calculating energy consumption increase when speed limit rises from 55 mph to 65 mph
- 5. Taking out the big part: Calculate $\sqrt{5}$
- 6. Taking out the big part: What is the general rule for $(1 + x)^n$?
- 7. Taking out the big part: Is $(1+0.1)^{10} \approx 2$? Why or why not?

Lecture 9

- 1. Questions from Lecture 8
- 2. Taking out the big part and picture proofs: Evaluate $\int_{-\pi/2}^{\pi/2} (\cos t)^{100} dt$ to within 5% in less than 5 minutes
- 3. Analogy: Into how many regions will 5 planes divde 3-dimensional space?
 - Find patterns between Dots on a Line, Lines on a Plane, and Planes in Space

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

^{18.098/6.099} Lecture Topics

3

Lecture 10

- 1. Analogy: Planes in space creating regions
 - Find the general expression for the number of regions formed by lines in a plane
 - Find the general expression for the number of regions formed by planes in space
- 2. Analogy: A derivative is like a fraction
 - Another way to look at the chain rule: $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$
- 3. What does $e^{d/dx}$ mean?
 - What does $e^{\mathcal{D}}$ mean when $\mathcal{D} = d/dx$? Answer: $e^{\mathcal{D}} = \mathcal{L}$ when \mathcal{L} is the left shift operator $(e^{-\mathcal{D}} = \mathcal{R})$
 - Definition of the right shift operator: \mathcal{R}
 - What does summation mean? Answer: $\Sigma = \frac{1}{1-\mathcal{R}} = \frac{1}{1-e^{-\mathcal{D}}}$

Lecture 11

- 1. Questions from Lecture 10
- 2. Recapitulation of summation operator derivation
- 3. Analogy: Approximation of logarithms using musical intervals

^{18.098/6.099} Lecture Topics