18.100B : Fall 2010 : Section R2 Homework 5

Due Tuesday, October 12, 1pm

Reading: Tue Oct.5 : completeness, Rudin 3.8-20 Thu Oct.7 : construction of the real numbers, notes

- **1.** Let *H* be the set of all human beings (past and present). Let *R* be the usual family relation on *H*; that is, for $h, k \in H$ we have $(h, k) \in R$ if and only if *h* and *k* have a common ancestor. Show that *R* is reflexive and symmetric, but not transitive.
- **2.** (a) Let (a_n) be a Cauchy sequence in \mathbb{Q} , such that a_n does *not* converge to 0. Show that there is an $\omega > 0$ and an $N \in \mathbb{N}$ so that $|a_n| > \omega$ for all $n \ge N$. Moreover, show that the sign of a_n is constant for large n.
 - (b) Following part (a), show that if (a_n) is a Cauchy sequence in \mathbb{Q} that does not converge to 0, then $(1/a_n)$ is a Cauchy sequence in \mathbb{Q} . [*Remark*: it would be tempting to solve this problem by noting that, thinking of (a_n) living in the bigger complete metric space \mathbb{R} , we can replace the word "Cauchy" by "convergent", which makes for an easy proof. That is *not* the intention of the problem; you should work directly within \mathbb{Q} .]
- **3**. Problem 4, p. 78 in Rudin. (Hint: consider the two subsequences given by the odd and even terms you can find relations between the lim sup of these two.)
- **4**. Let $(s_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . Show that the definition of \liminf in the lecture coincides with the s_* of Rudin 3.16. In the lecture, we defined

$$\liminf_{n \to \infty} s_n := \begin{cases} \lim_{n \to \infty} \inf\{s_k \, | \, k \ge n\} & ; \text{ if limit of infima exists,} \\ -\infty & ; \text{ if } (s_n) \text{ is not bounded below;} \\ \infty & ; \text{ if } s_n \to \infty. \end{cases}$$

5. Let $\mathscr{P}(\mathbb{N})$ denote the set of all subsets of \mathbb{N} . Define a relation \mathscr{D} on $\mathscr{P}(\mathbb{N})$ as follows: $(A, B) \in \mathscr{D}$ if the symmetric difference

$$A\Delta B := (A \cup B) \setminus (A \cap B)$$

is finite. (That is: *A* and *B* only differ by finitely many numbers.)

- (a) Show that \mathcal{D} is an equivalence relation.
- (b) Show that all finite subsets of \mathbb{N} are in the same equivalence class of \mathscr{D} .
- (c) Show that each equivalence class of \mathscr{D} is a *countable* family of subsets. [*Hint*: fix any subset $A_0 \in \mathscr{P}(\mathbb{N})$, and for each $n \in \mathbb{N}$ consider the classes $A_0^{(n)} = \{A \subseteq \mathbb{N}; A \text{ differs from } A_0 \text{ by } n \text{ numbers}\}$. Show that $A_0^{(n)}$ is countable, and that the equivalence class $[A_0]_{\mathscr{D}}$ is the union of the countably-many $A_0^{(n)}$.]

not for credit: Conclude that there are uncountably many equivalences classes of \mathcal{D} .

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.