18.100B Fall 2010 Practice Quiz 3 Solutions

1.(a)
$$R := f(x_0) - g(x_0) > 0$$

f, g continuous, so with $\epsilon = R/2$ find

- $\bullet \exists \delta_f > 0 : f(B_{\delta_f}(x_0)) \subset (f(x_0) R/2, f(x_0) + R/2)$
- $\bullet \exists \delta_g > 0 : g(B_{\delta_g}(x_0)) \subset (g(x_0) R/2, g(x_0) + R/2)$

Take
$$r = \min\{\delta_f, \delta_g\} > 0$$
, then $y \in B_r(x_0) \Rightarrow \begin{cases} f(y) > f(x_0) - R/2 \\ g(y) < g(x_0) + R/2 \end{cases} \Rightarrow f(y) > R - R/2 - R/2 = 0.$

(b) To show: s continuous at any $x_0 \in X$

3 cases:

1) $f(x_0) > g(x_0)$: By (a), s(x) = f(x) on $B_r(x_0)$ for some r > 0

f continuous $\Rightarrow s$ continuous at x_0

2) $f(x_0) < g(x_0)$: By (a), s(x) = g(x) on $B_r(x_0)$ for some r > 0

 $g \text{ continuous } \Rightarrow s \text{ continuous at } x_0$

3) $f(x_0) = g(x_0)$: Given $\epsilon > 0$, find $\delta_f, \delta_g > 0$ and $\delta = \min{\{\delta_f, \delta_g\}} > 0$ $d(y,x_0) < \delta \Rightarrow s(B_{\delta}(x_0)) \subset (f(B_{\delta}(x_0)) \cup g(B_{\delta}(x_0))) \subset (s(x_0) - \epsilon, s(x_0) + \epsilon)$

$$\begin{cases} f(x) = x \\ g(x) = 0 \end{cases} s(x) = \begin{cases} x; & x \le 0 \\ 0; & x > 0 \end{cases}$$

s is not differentiable at $x_0 = 0$ because

$$\lim_{t \to 0^+} \frac{s(t) - s(0)}{t - 0} = \lim_{t \to 0^+} \frac{0}{t} = \lim_{t \to 0^+} 0 = 0$$

$$\lim_{t \to 0^-} \frac{s(t) - s(0)}{t - 0} = \lim_{t \to 0} \frac{t}{t} = \lim_{t \to 0} 1 = 1$$

$$\Rightarrow \lim_{t \to 0} \frac{s(t) - s(0)}{t - 0} \text{ does not exist.}$$

2. Suppose by contradiction $f(U) = A \cup B$ is separated:

$$\bar{A} \cap B = \emptyset, A \cap \bar{B} = \emptyset, A \neq \emptyset, B \neq \emptyset$$

Then $U \subset f^{-1}(f(U))$ and hence

$$U = f^{-1}(A \cup B) \cap U' = (f^{-1}(A) \cup f^{-1}(B)) \cap U = A' \cup B'$$

with
$$A' = f^{-1}(A) \cap U, B' = f^{-1}(B) \cap U.$$

Claim: $U = A' \cup B'$ is separated in contradiction to assumption Proof:

- $\bullet \exists a \in A \Rightarrow \exists a' \in U : f(a') = a \in A \Rightarrow \exists a' \in f^{-1}(A) \cap U = A' \Rightarrow A' \neq \emptyset$
- Similarly $B' \neq \emptyset$
- if $x \in \bar{A}' \cap B'$ then $x \in U, f(x) \in B$, and $\exists (x_n)_{n \in \mathbb{N}} \subset U : f(x_n) \in A, x_n \to x$ by continuity of f, $f(x_n) \to f(x) \in B$ by $f(x_n) \in A$, $f(x) = \lim_{n \to \infty} f(x_n) \in A$ contradiction to $\bar{A} \cap B = \emptyset$ $\Rightarrow \bar{A}' \cap B' = \emptyset$
- Similarly $A' \cap \bar{B}' = \emptyset$ (or as in Rudin 4.22)

3.(a)
$$f:[a,b] \to \mathbb{R}$$
 continuous, differentiable on (a,b) $\Rightarrow \exists x \in (a,b): \frac{f(b)-f(a)}{b-a} = f'(x)$

(b)

Pick $0 < \epsilon < \frac{1}{M}$.

To check that f is injective, suppose by contradiction that f(a) = f(b) for some a < b. By the mean value theorem, there exists $x \in (a, b)$ s.t.

$$0 = \frac{f(b) - f(a)}{b - a} = f'(x) = 1 + \epsilon g'(x) \ge 1 - \epsilon M > 0$$

$$\Rightarrow 0 > 0 \Rightarrow \Leftarrow$$

(c)

By the mean value theorem,

$$\forall t > 0 \quad \exists x_t \in (0, t) : \frac{f(t) - f(0)}{t - 0} = f'(x_t)$$

Consider $t_n \to 0$, then $\frac{f(t_n) - f(0)}{t_n - 0} = f'(x_{t_n})$

where $0 < |x_{t_n}| < |t_n|$, hence $x_{t_n} \to 0$, and so by assumption $(\lim_{x \to 0} f'(x) = A)$,

$$\frac{f(t_n) - f(0)}{t_n - 0} = f'(x_{t_n}) \to A.$$

This shows $\lim_{t\to 0} \frac{f(t)-f(0)}{t-0} = A$, as claimed.

4.(a) TRUE

By the intermediate value theorem, $\forall R \in \mathbb{R} \ \exists a < 0, b > 0 : f(a) > R, f(b) < R \Rightarrow \exists a < y < b : f(y) = R$

(b) TRUE

(Above \Rightarrow uniformly continuous): Given ϵ , pick $N > \epsilon^{-1}$, which provides R > 0, then take $\delta \in (0, R^{-1})$

(Uniformly continuous \Rightarrow above): Given N, let $\epsilon = 1/N$, which provides $\delta > 0$, then take $R > \delta^{-1}$

Uniformly continuous: $\forall \epsilon > 0 \ \exists \delta > 0 : \forall y f(B_{\delta}(y)) \subset B_{\epsilon}(f(y))$

(c) TRUE

$$\lim_{t \to 0} \frac{g(t) - g(0)}{t - 0} = \lim_{t \to 0} \frac{tf(t)}{t} = \lim_{t \to 0} f(t) = f(0) \text{ exists}$$

(d) TRUE

$$d(f(x), f(y)) = |f(x) - f(y)|$$

= $|f'(z)(x - y)|$ for some $z \in \mathbb{R}$
 $\leq Cd(x, y)$

So for $\epsilon > 0$ take $\delta = \frac{\epsilon}{C}$.

(e) FALSE

<u>Idea:</u> f can vary little with large f' by fast oscillation.

Idea: f can vary little with large f' by fast oscillation. $f(x) = \frac{1}{x^2 + 1} \cdot \sin x^4 \text{ is differentiable and uniformly continuous: Given } \epsilon > 0$ • Find R > 0 s.t. $\forall |x| > R$, $|f(x)| < \frac{\epsilon}{2}$ • Find $\delta > 0$ from continuity on [-R, R]but $f'(x) = \frac{3x^3 \sin x^4(x^2 + 1) - \sin x^4 \cdot 2x}{(x^2 + 1)^2}$ so for $x_n = \sqrt[4]{n\pi + \frac{\pi}{2}} \to \infty$ get $f'(x_n) \to \infty$

$$\underline{\text{but}} \ f'(x) = \frac{3x^3 \sin x^4 (x^2 + 1) - \sin x^4 \cdot 2x}{(x^2 + 1)^2}$$

so for
$$x_n = \sqrt[4]{n\pi + \frac{\pi}{2}} \to \infty$$
 get $f'(x_n) \to \infty$

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.