Practice Quiz 1

18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME: SOLUTIONS

This is a 30 minute in-class exam. No notes, books, or calculators are permitted. Point values are indicated for each problem. Do all the work on these pages.

GRADING

1. _____/15

2. _____ /20

3. _____/15

4. _____ /20

TOTAL

/70

Problem 1. [5+5+5 points]

(a) Write down the definition of compactness in an arbitrary metric space.

 $E \subset X$ is compact if, given any open cover $E \subset U \mathcal{U}_{\alpha \in A}$ by open sets $\mathcal{U}_{\alpha} \subset X$ (with A any index set), one can find a finite subcover $E \subset U \mathcal{U}_{\alpha}$, with $A' \subset A$ a finite subset.

(b) Prove that finite sets are always compact.

$$E = \{e_{i},...,e_{N}\}\$$
Given an open cover $E \subset UU_{\alpha}$,
for $i=1...N$ pick $\alpha_{i} \in A$ s.t. $e_{i} \in U_{\alpha_{i}}$,
then $A' := \{\alpha_{1},...,\alpha_{N}\} \subset A$ is finite
and $E \subset UU_{\alpha}$ is still a cover.

(c) Give an example of an infinite set that is not compact. (Show why it does not satisfy your definition in (a))

$$E = N \subset R$$
because $N \subset U B_{1/2}(n)$ is an open cover new with $m \in B_{1/2}(n) \Rightarrow m = n$, so if $N \subset U B_{1/2}(n)$ then necessarily $m \in A' \ \forall m \Rightarrow A' = N$ infinite

Problem 2. [10+10 points]

(a) Let A and B be countable sets. Prove that $A \cup B$ is countable and that $A \cap B$ is at most countable, using the definition of countability.

By assumption we have $f: IN \rightarrow A$, $g: IN \rightarrow B$ bijections

Define a surjection $h: IN \rightarrow A \cup B$ by h(2n-1) = f(n), h(2n) = g(n)

Then we can make it a bijection $h': N \rightarrow A \cup B$ by h'(1) = h(1), $h'(n+1) := h(m_n)$ with $m_i = min \{k \in N \mid h(k) \notin \{h'(1), ..., h'(n)\}\}$

(m always exists because Ainfinite => AuB infinite)

Similarly, define $f'(n) := f(m_n)$ with $m_n := \min \{k \in \mathbb{N} \mid f(k) \in A \cap B \setminus \{f(l), ..., f(n)\} \}$.

If for some neN, $AnB^{\{f(1),...,f(n)\}} = \emptyset$, then AnB is finite $(\sim \{1,...,n\})$; otherwise this defines a bijection $IN \rightarrow AnB$, so AnB is countable.

(b) Consider two subsets $S, T \subset \mathbb{R}$ and their sum

$$S+T:=\{s+t\,|\,s\in S,t\in T\}\subset\mathbb{R}.$$

Show (from the definition of a supremum) that $\sup(S+T) = \sup S + \sup T$.

By definition,

•
$$\forall seS$$
 $s \in supS$ $\Rightarrow \forall s+t \in S+T$ $s+t \in supS+supT$
• $\forall t \in T$ $t \in supT$

So sup S+sup T is an upper bound.

$$\Rightarrow$$
 Given $\alpha < \sup S + \sup T$ write $\alpha = \gamma + \beta$, $\beta < \sup T$

$$\begin{cases} \gamma = \sup S - \frac{1}{2} \left(\sup S + \sup T - \alpha \right) \\ \beta = \sup T - \frac{1}{2} \left(\sup S + \sup T - \alpha \right) \end{cases}$$

 $50 \propto is not am upper bound.$

Problem 3. [5+5+5 points] Consider $X = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ as metric space with metric induced from the standard metric of \mathbb{R} .

a) What are the limit points of *X*?

only 0

because
$$B_r(0)nE$$
 for $r>0$ always contains some $\frac{1}{n} \neq 0$

all other points are isolated, $B_{V_{2n}}(\frac{1}{n})nE = \{\frac{1}{n}\}$

b) What are the closed subsets of *X*?

-o finite subsets (which never hove limit points)

-> infinite subsets that contain O

c) What are the compact subsets of *X*? Why?

finite subsets and infinite subsets that contain 0 because $X \subset \mathbb{R}$ is compact (bounded & closed) and the compact subsets of a compact set are exactly the closed subsets.

Problem 4. [20 points: +4 for each correct, -4 for each incorrect; no proofs required.]

a) For any open set
$$A \subset \mathbb{R}$$
, we have $int(\bar{A}) = A$.

 $\left(\inf(\overline{A})\right)$ does not contain isolated points of A

b) Let *V* be the set of all functions $f:[0,1]\to\mathbb{R}$, and define d(f,g)=|f(0)-g(0)|. Then (V,d) is a metric space.

e.g.
$$f(x)=x$$

(not definite: e.g.
$$f(x)=x$$
 $d(f,g)=10-01=0$
 $g(x)=x^2$ but $f \neq g$

c) If X is a compact metric space and $E \subset X$ is not compact, then E is not closed.

FALSE

because closed subsets of compact sets are compact

d) The set $\{(x,y) \in \mathbb{R}^2 | x+y \subseteq \mathbb{Q} \}$ is countable.

TRUE FALSE there is an uncountable subset $\{(x,-x) \mid x \in R\} \simeq R$

e) The set $\{(x,y) \in \mathbb{R}^2 | x+y \in \mathbb{Q}, x-y \in \mathbb{Q} \}$ is countable.

FALSE

$$\begin{cases} x+y\in Q \\ x-y\in Q \end{cases} \Rightarrow x,y\in Q$$
, so the set is $Q\times Q = \bigcup\{q\}\times Q$

which is countable as countable union of countable sets

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.