Practice Quiz 2
18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME: SOL U TIO A/S

This is a 30 minute in-class exam. No notes, books, or calculators are permitted. Point
values are indicated for each problem. Do all the work on these pages.



Problem 1. [5+5+5 points]
Let (X, d) be a metric space.

(a) State the definition of a connected subset of X via separated sets, as in Rudin.
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(b) Let (X, d) be connected. Show that a subset A C X is both open and closed if and only
if A =0 or A= X. (This was a homework problem, but the task is to reprove this fact.)
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(c) Suppose that (X, d) is a metric space with the following property: A subset A C X is
both open and closed if and only if A = 0 or A = X. Then show that (X, d) is connected.
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Problem 2. [10+10 points]
(@) Find liminf,,_.., and lim sup,,_, . for each of the following sequences.
Are these sequences bounded and/or convergent?
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(b) Let (a,,), (b,) and (c,,) be sequences in R such that for all n > N we have a,, <b,, < c,.
Assume also that lim a, = lim ¢, = L for some real number L.
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Prove that lim b, = L.
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Problem 3. [10 points] Assume that >  a, is a convergent series and that a,, > 0 for
alln > N. Prove that }"° | */|a,| converges. (Hint: You can use the general inequality
2zy < 22 +y? for x,y € R.)
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Problem 4. [20 points: +4 for each correct, —4 for each incorrect; no proofs required.]
(Hint: Note the penalty — it may be wise to leave some questions unanswered.)

a) Let (X, d) be a metric space, and let £ C X. Then the closure of E is equal to the set
L(FE) of all limits of sequences in £:

LE)={z € X |3z, )peny C £ : lim z, = z}.
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b) If Y | a, is convergent and a,, > 0 then a,, — 0.
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¢) The subset {z € Q| |z| & 1} of Q is connected.
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d) Let (z,,) be a sequence in the metric space (X, d) such that d(z,,, z,11) < f Then (z,) is
a Cauchy sequence.
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e) Suppose Y 7, ¢,z" is a power series with convergence radius R = 2 and such that it
converges for z = 2. Then it converges for all other »z € C with |2| = 2.
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