Practice Quiz 2
18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME: SOLUTIONS

This is a 30 minute in-class exam. No notes, books, or calculators are permitted. Point
values are indicated for each problem. Do all the work on these pages.



Problem 1. [5+7+3 points]
Let (X, d) be a metric space and let f: X — Rand g : X — R be continuous maps.

(@) Suppose f(zg) > g(zo). Show that there exists » > 0 such that f(y) > g(y) for all
(TS B7-(I0).
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(b) Show that s(z) := max{f(z), g(z)} is a continuous map s : X — R.
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(c) Let X = R with the Euclidean metric. Is s(z) as in (b) necessarily differentiable? (Give
a proof or counterexample.)
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Problem 2. [10 points] Let f : X — Y be a continuous map between metric spaces. Show
that for any connected subset U C X the image f(U) C Y is connected.
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Problem 3. [5+7+8 points]

(a) State the mean value theorem — in the exact version that you want to use in (b) and (c)
below.
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(b) Suppose g: R — R is a differentiable function, and there is a constant A/ > 0 so that
|¢'(x)] < M for all 2 € R. Show that for sufficiently small ¢ > 0 the map f(z) = 2 + eg(z)
is an injective (one-to-one) map f : R — R.
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(c) Let f: (—1,1) — R be a continuous function, such that f'(x) exists for all z # 0.
Suppose that

lim f(2) = A

exists. Show that, in fact, f is differentiable at 0, with f'(0) = A.
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Problem 4. [20 points: +4 for each correct, —4 for each incorrect; no proofs required.]

a) If f : R — R is continuous with lim,_,_ f(z) = oo and lim,_.., = —o0, then for every
R € R there exists y € R such that f (y’); R. b
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o) Let f : R — Rbe continuous, then g(z) = zf(x) is differentiable at z = 0.
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d) Let f : R — R be continuously differentiable and |f'(x)| < C for all z € R and some
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