18.100B/C: Fall 2010
Solutions to Practice Final Exam

1. Suppose for sake of contradiction that z > 0. Then % -x > 0 because the product of two positive

quantities is positive. Thus § 40 < 3 + & (because y < z implies 4y < = + 2 for all x), i.e.,
5 < x. Also, since € := § > 0 we have by assumption that z < %. However, for a strict order
at most one of z < § and § < x can be true. Hence we obtain a contradiction to the assumption

2 > 0. Thus x % 0. Since « > 0, this implies = = 0, as desired.

2.(a) We use 2xy < 22 + y? (which follows from (z — y)? > 0) and a,, > 0 to estimate

1 1 1
0< Vanpt1 < 5(\/an2 + \/an+12) = ian + §Gn+1.

Next, the partial sums of > ° | a,4+1 are the same ones (shifted by one —see (b)) as for > | a,,, and
so by assumption both series converge. Hence by linearity for limits, the series > >~ , %an + 50041
also converges. Now convergence of Y |\ /anGn41 follows from the comparison criterion.

(b) Since ayn41 < ay, we obtain 0 < apq1 < /Gplpy1, SO Zzo:l an+1 converges by the comparison
test. But now limy_, 22:1 Gn1 exists iff limg_ oo Zi;%) Gpg1 = limg_ o0 Zﬁzl a, exists; proving
convergence of the latter.

3.(a) Both f(z) =42(1 —z) and f(z) =1 — |2z — 1] work nicely.
(b) No function: continuous functions take connected sets to connected sets.
(c) Define

1, z2>2.

This function is continuous on [0,1] U [2,3] and f([0,1] U [2,3]) = {0, 1}.

(d) No function: suppose such a function f exists. There exists 2 for which f(z1) =1 and x5 for
which f(x2) = 2, so by the Intermediate Value Theorem there is x between z; and x5 for which
f(z) = V2, a contradiction. (Or, use connectedness again.)

(e) No function: continuous functions take compact sets to compact sets.

4. Given ¢ > 0, by uniform convergence of (f,), we can choose some N € N such that n > N
implies |f,,(x) — f(x)| < § for all z € E. By uniform continuity of fy, we can choose some ¢ such
that d(z,y) < ¢ implies |fn(x) — fn(y)| < 5. Then for any x,y € E such that d(x,y) < 0 we have

lf(x) = f)l = f(z) = fn(2) + fn() = v () + I (y) — f(y)]
<|f(z) = fn(@)] + [fn(2) = In@)] + [ (y) = Fy)l
< % + % + % =g,

so f is uniformly continuous.
5. (see Melrose Test 2)

6. (see Melrose Test 2)



7.(a) For all € > 0, there exists a (countable) collection {B(x;,r;)} of open balls such that N C
U, B(zi,r;) and >, 7 < e.

(b) We have {z | f(x) # f(x)} = 0 has measure 0, so f ~ f. The relation is symmetric since
{z | g(x) # f(x)} = {z | g(x) # f(z)}. To check is transitivity assume f ~ g and g ~ h. Observe
that if f(z) # h(z) then we must have either f(z) # g(x) or g(z) # h(z) (or both), so

{o| f(z) # @)} S{z | f(z) # 9(x)} Uiz | fz) # g(2)}-

So we must show that unions and subsets of measure-0 sets have measure 0. For subsets, just take
a covering of the superset of measure 0 to cover its subset. For the union, take the union of two
coverings of measure less than £/2 to cover the union with sets of total measure less than e.

(c) Since f and g are both integrable, f — g is integrable as well, and we are asked to show that
fol f—g = 0 given that f — g = 0 almost everywhere. Since f — g is integrable, the integral is
equal to the infimum over all upper Riemann sums. Since f — g is zero almost everywhere, every
interval contains a point at which f — g = 0, so the upper Riemann sum for any fixed partition is a
sum of nonnegative numbers and thus nonnegative. The infimum of a set of nonnegative quantities
must itself be nonnegative, so fol f —g > 0. However, we may apply identical reasoning to get that

fol g — f > 0. Since these two quantities are negatives of each other, they both must equal 0, as
needed.

8.(a) Fix € > 0. For each f;, choose a §; such that d(x,y) < §; implies |f;(x) — fi(y)| < e for all
x,y. Then let § = min{d;} > 0 and we have that for any f; € # and any z,y in the common
domain that if d(x,y) < J then |f;(z) — fi(y)| < €, so .Z is equicontinuous.

(b) Let 6 =¢/n. If |z — y| < § then

lz—y| lz—y|

n —

— =nlr—y| <e,
nZ

L Y

|fn(x)_fn(y)| = x_i_% - y+%

= n <
o+ 5l v+l

S0 fy, is uniformly continuous for all n.
(c) We have f,,(0) = 0 for all n and f,(z) — 1 as n — oo for any fixed z € (0, 1], so (f,) converges
pointwise to the function
0, =0
-

1, xe(0,1].

However, f,(+) = 3 for all n, so for all n there exists x such that d(f,(z), f(z)) > . Thus
no subsequence of the (f,) can converge uniformly. (Alternatively, invoke problem 4 here: if
convergence were uniform, the limit function would be uniformly continuous, when in fact it’s
not even continuous.) In addition, we have 0 < f,(z) < 1 for all n € N and all € [0,1], so
(fn) is uniformly bounded. By Arzela-Ascoli, any equicontinuous pointwise bounded sequence of
continuous functions has a uniformly convergent subsequence, so it follows that our sequence of
functions is not equicontinuous.

9. see Melrose Test 1 .. hence no solution here



10.(a) Choose some f such that f(zg) =c # 0. Then if doo ([, g) < %, it follows that

lg(x0)| = |g(w0) — f(20) + f(z0)]
> | f(xo)| = |f(x0) — g(z0)|
> |f(zo)| - sup |f(z) —g(z)]
> 1o - 14
>0,

so g(xg) # 0. Thus there is an open ball in K§ around every element of K§', so K§ is open and
thus Ky is closed.
(b) Denote the set of the previous part by Ko(z). Then

Ki = () Ko()

z€E

is an intersection of closed sets, and so closed. We showed on one of the problem sets that if two
continuous functions agree on a dense subset of a metric space then they agree on the whole space,
so it follows that actually K1 = {z} where z is the function such that z(z) = 0 for all .

(c) We have that actually B = Bj(z) is the open ball of radius 1 centered at the all-zero function
z, and we’ve shown that an open ball in any metric space is an open set. (As a reminder of this
general result: choose any = € B,(z), and let d = d(z,z) < r. Then for any y € B,_4(z) we have
d(z,y) <d(z,z) +d(z,y) <d+ (r—d)=r,soy € B.(z), as needed.)
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