
18.103 Fall 2013

Problem Set 11

1. Consider f : R→ R monotone increasing, i. e. x ≤ y =⇒ f(x) ≤ f(y).
For −∞ < a < b <∞, define

νf ((a, b)) = lim
ε→0+

(f(b− ε)− f(a+ ε))

The same proof as in the construction of Lebesgue measure shows that νf is a measure on
the ring of finite unions of intervals and extends to a measure on Borel sets. νf is sometimes
denoted df . (Thus, in the special case f(x) = x, we get Lebesgue measure νx = dx.)

a) Show that, conversely, for any measure µ on R that assigns a finite (nonnegative) number
to each compact set there is a left continuous function f such that µ = νf . Left continuous
means

lim
x→a−

f(x) = f(a)

and x→ a− means x→ a with x < a.

b) Suppose that f is monotone increasing. Show that f is continuous at all but (at most)
countably many points xj. Find a continuous monotone increasing function g such that

νf = νg +
∑

cjδ(x− xj), cj = f(x+
j )− f(x−j )

The sum of delta functions is called the pure point or atomic part of the measure νf , and νg
is the continuous part.

c) Consider the Cantor function defined for each sequence ak ∈ {0, 1} by

C(x) =
N−1∑
k=1

ak2
−k + 2−N , 3−N ≤ x− 2

N−1∑
k=1

ak3
−k ≤ 2 · 3−N

Show that C can be extended uniquely to a continuous monotone increasing function on R
satisfying C(x) = 0 for all x ≤ 0 and C(x) = 1 for all x ≥ 1. Denote the corresponding
Cantor measure by dC = µC . Show that µC is supported on the Cantor set. In other words
µC(E) = 0 for any E ⊂ R such that E is disjoint from the standard middle third Cantor set.

d) Let
µ1 ∗ µ2 ∗ · · · ∗ µn; with µk = (1/2)[δ(x) + δ(x− 2/3k)]

From part (a) there is a monotone, left continuous function Cn such that Cn(x) = 0 for
x ≤ 0 and dCn = µ1 ∗ · · · ∗ µn. Show that

lim
n→∞

Cn(x) = C(x)
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e) Deduce that dCn tends weakly to µC and establish the Fourier transform formula

µ̂C(y) = eay
∞∏
k=1

cos(y/3k).

In the process identify the complex number a and show that the infinite product converges.
Moreover, by considering the values at y = 2π3n, show that µ̂C(y) does not tend to zero as
y →∞. In other words, we have constructed a continuous measure whose Fourier transform
does not tend to zero at infinity.

2. We say a function f : R → R has bounded variation or f is a BV function, if there is
M <∞ for which

N∑
k=1

|f(xk)− f(xk−1)| ≤M

for every sequence x0 < x1 < x2 < · · · < xN and every N .

a) Show that a function f of bounded variation on R is continuous except at countably many
points, and identify a left continuous function g that agrees with f at all but countably many
points. Give an example showing that g may have smaller total variation than f .

b) Show that a left continuous function g of bounded variation can be written

g(x) = h1(x)− h2(x)

with h1 and h2 left continuous, monotone increasing, and bounded. Hint: For x > 0, define

g+(x) = sup{
n∑
j=1

[g(xj)− g(xj−1)]
+ : 0 < x0 < x1 < · · · xn ≤ x};

g−(x) = sup{
n∑
j=1

[g(xj)− g(xj−1)]
− : 0 < x0 < x1 < · · · xn ≤ x}

where a+ = max(a, 0) and a− = max(−a, 0).

c) Consider g as in part (b). Show that for every ϕ ∈ S,

−
∫

R
ϕ′(x)g(x) dx =

∫
R

ϕdh1 −
∫

R
ϕdh2

This says, by definition, that the generalized derivative of g is dh1 − dh2.

d) The procedure in parts (b) and (c) works for all functions of bounded variation, not just
ones that are left continuous. Write down explicit monotone increasing functions h1 and h2

such that f(x) = h1(x)− h2(x) for

f(x) =


0 x < 0

2 x = 0

1 x > 0
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and calculate the generalized derivative f ′. Alternatively, find g left continuous that agrees
with f except at one point and apply (b) and (c) to g. Compare the generalized derivative
g′ with f ′. Are they the same?

3. (Shannon sampling theorem; Stein-Shakarchi Problem 20) A function f is called band-
limited if its Fourier transform is supported on an interval of length L. We show that
band-limited functions whose frequencies come from an interval of length L can be recovered
from values spaced by 2π/L. By dilation and translation we may assume that L = 2π and
center the interval of frequencies around 0.

a) Let f ∈ L2(R) be such that f̂ is supported on [−π, π]. Show that f is continuous. (More
precisely, f has a continuous representative which we will use from now on.)

b) Show that f from part (a) satisfies∫ ∞
−∞
|f(x)|2 dx =

∞∑
−∞

|f(n)|2

and

f̂(ξ) = 1[−π,π](ξ)
∞∑

n=−∞

f(n)e−inξ

in the sense of L2(R)-norm convergence.

c) Show that

f(x) =
∞∑

n=−∞

f(n)K1(x− n)

for K1 from optional Problem 5 below. In the course of the proof, explain why the series
converges for every x. (Warning: You may carry out the computation formally first. But
when you justify the appropriate exchange of limits, remember that you only have norm
convergence in L2.)

d) One can also recover f from more densely spaced samples. Show that

f(x) =
∞∑

n=−∞

1

λ
f
(x
λ

)
Kλ

(
x− n

λ

)
,

with Kλ from Problem 5. Note that Kλ(y) = O(y−2) so that this series converges faster than
the one in (c).

4. In this problem we deduce the Fourier series/inversion formula from its discrete analogue
on Z/NZ.

a) Consider f ∈ C(R/2πZ) and xN(j) = 2πj/N . Define

cN(n) =
1

N

N∑
j=1

f(xN(j))e−ixN (j)n.
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Show that for any integer M ,

f(xN(j)) =
N−M−1∑
n=−M

cN(n)eixN (j)n. (1)

(Later, we’ll use the case M = N/2 if N is odd or M = (N + 1)/2 if N is even.)

b) Show that for continuous f ,

lim
N→∞

cN(n) =
1

2π

∫ 2π

0

f(x)e−inx dx

c) Prove directly the following elementary version of the dominated convergence theorem.

If |aN(n)| ≤ g(n),
∞∑

n=−∞

g(n) <∞, and lim
N→∞

aN(n) = a(n),

then

lim
N→∞

∞∑
n=−∞

aN(n) =
∞∑

n=−∞

a(n)

d) Suppose that f ∈ C2(R/2πZ). Carry out the following steps to prove

|cN(n)| ≤ max |f ′′|/n2 (2)

i) Let g : Z→ C satisfying g(j +N) = g(j). For n ∈ Z, let ω = e2πin/N and define

F (ω) =
1

N

N∑
j=1

g(j)ω−j

Show that

(ω + ω−1 − 2)F (ω) =
1

N

N∑
k=1

(g(j + 1) + g(j − 1)− 2g(j))ω−j

and deduce that for |n| ≤ 3N/4,

|F (ω)| ≤ N2

n2
max
j
|g(j + 1) + g(j − 1)− 2g(j)|

ii) Show that for f ∈ C2(R/2πZ),

|f(x+ h) + f(x− h)− 2f(x)| ≤ h2 max |f ′′|
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using the Taylor formula

m(1) = m(0) +m′(0) +

∫ 1

0

m′′(t)(1− t) dt

applied to m(t) = f(x+ th) + f(x− th)− 2f(x).

iii) Deduce (2) from (i) and (ii).

e) Explain how (a)–(d) yield the Fourier series formula for every function f ∈ C2(R/2πZ).

5. This optional problem for no credit is here so that you can use the formulas from it to
carry out the Shannon sampling theorem above in Problem 3. We begin by showing that
the convolution of L2 functions is compatible with the Fourier transform, then compute the
explicit example used for Shannon’s theorem.

a) Let f and g belong to L2(R). Denote

gN(x) =
1

2π

∫ N

−N
ĝ(ξ)eixξ dξ

Show that

(̂fg) =
1

2π
f̂ ∗ ĝ

by evaluating

lim
N→∞

∫ ∞
−∞

f(x)gN(x)e−ixξ dx

in two ways.

b) Let Ia(y) = 1[−a,a](y). For 0 < h ≤ a, find Ja,h(x) such that

Ĵa,h(ξ) = Ia ∗ Ih(ξ)

c) Deduce from part (b) the formula for the function Kλ(x) of the form

Kλ(y) =
C sin(Ay) sin(By)

y2
, λ > 1

whose Fourier transform has the trapezoidal shape

K̂λ(ξ) =


1, |ξ| ≤ π

(λπ − |ξ|)/π(λ− 1), π ≤ |ξ| ≤ πλ

0, πλ ≤ |ξ|

Indeed, A = π(λ− 1), B = π(λ+ 1), C = 2/π2(λ− 1). (See Stein-Shakarchi Problem 20, p.
167-168. But be warned that our convention for the Fourier transform is different, and the
formula there is written with cosines, not sines.)
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d) Evaluate Kλ(0) and show that

K1(y) = lim
λ→1

Kλ(y).

6. This optional exercise shows how to construct a countable family of independent random
variables. It’s taken from the book Probability Theory, by D. W. Stroock. Consider a
countable sequence of probability spaces (Xn,Fn, µn). Define the ring of so-called cylinder
sets, namely sets of the form B ×Xn+1 ×Xn+2 × · · · with B ∈ F1 ×F2 × · · · Fn.

Theorem. There exists a unique measure µ on the cylinder ring satisfying

µ(B ×Xn+1 ×Xn+2 × · · · ) = µ1 × µ2 × · · · × µn(B)

Follow this outline to prove the theorem. Define X =
∞∏
j=1

Xj, and define the projection

πn : X → X1 ×X2 × · · · ×Xn, by πn(x) = (x1, x2, . . . , xn)

a) Show that the theorem follows if one shows that any nested sequence An ⊃ An+1 in the
cylinder ring, for which

lim inf
n→∞

µ(An) ≥ ε > 0

also satisfies
∞⋂
n=1

An 6= ∅

b) Show that it suffices to consider the situation in which for some Bn ∈ F1 × · · · × Fn, the
nested sequence satisfies

An = π−1
n (Bn); Bn ×Xn+1 ⊃ Bn+1

c) Define gm,m(x1, x2, . . . , xm) = 1Bm(x1, x2, . . . , xm). For all n > m, define
gm,n : X1 ×X2 × · · · ×Xm → [0, 1] by

gm,n(x1, x2, . . . , xm) =

∫
Xm+1×···×Xn

1Bn(x1, x2, . . . xn)d(µm+1 × · · · × µn)

Show that the limit
gm(x) := lim

n→∞
gm,n(x), x = (x1, . . . , xm)

exists and that

gm(x1, . . . , xm) =

∫
Xm+1

gm+1(x1, . . . , xm+1)dµm+1
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d) Use induction to find x = (x1, x2, . . . ) ∈ X such that for every m,

gm(x1, x2, . . . , xm) ≥ ε

and deduce that

x ∈
∞⋂
m=1

Am

This establishes (a) and concludes the construction of the infinite product measure.

e) The monotone class theorem says that if M is a collection of subsets of a set Z that is
closed under nested countable union and nested countable intersection and contains a ring
A, thenM contains the sigma-ring generated by A. (The theorem does not say whether the
whole set Z is in M, but in our situation Z ∈ A, so that the collection of subsets will be a
sigma-field.) Show that this result implies that the measure constructed above is the unique
measure on the sigma field generated by cylinder sets that agrees with the finite product
measures. (You may take the monotone class theorem for granted or prove it. It’s a bit
easier than the π − λ theorem, but in the same spirit.)
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