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Introduction

1.1 Schur’s theorem

In the 1910’s, Schur attempted to prove Fermat’s Last Theorem by Schur (1916)

reducing the equation Xn + Yn = Zn modulo a prime p. However,
he was unsuccessful. It turns out that, for every positive integer n,
the equation has nontrivial solutions mod p for all sufficiently large
primes p, which Schur established by proving the following classic
result.

Theorem 1.1 (Schur’s theorem). If the positive integers are colored with
finitely many colors, then there is always a monochromatic solution to x +

y = z (i.e., x, y, z all have the same color).

We will prove Schur’s theorem shortly. But first, let us show how
to deduce the existence of solutions to Xn + Yn ≡ Zn (mod p) using
Schur’s theorem.

Schur’s theorem is stated above in its “infinitary” (or qualitative)
form. It is equivalent to a “finitary” (or quantitative) formulation
below.

We write [N] := {1, 2, . . . , N}.

Theorem 1.2 (Schur’s theorem, finitary version). For every positive
integer r, there exists a positive integer N = N(r) such that if the elements
of [N] are colored with r colors, then there is a monochromatic solution to
x + y = z with x, y, z ∈ [N].

With the finitary version, we can also ask quantitative questions
such as how big does N(r) have to be as a function of r. For most
questions of this type, we do not know the answer, even approxi-
mately.

Let us show that the two formulations, Theorem 1.1 and Theo-
rem 1.2, are equivalent. It is clear that the finitary version of Schur’s
theorem implies the infinitary version. To see that the infinitary ver-
sion implies the finitary version, fix r, and suppose that for every
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14 schur’s theorem

N there is some coloring φN : [N] → [r] that avoids monochro-
matic solutions to x + y = z. We can take an infinite subsequence
of (φN) such that, for every k ∈ N, the value of φN(k) stabilizes as
N increases along this subsequence. Then the φN’s, along this subse-
quence, converges pointwise to some coloring φ : N → [r] avoiding
monochromatic solutions to x + y = z, but this contradicts the infini-
tary statement.

Let us now deduce Schur’s claim about Xn + Yn ≡ Zn (mod p).

Theorem 1.3. Let n be a positive integer. For all sufficiently large primes Schur (1916)

p, there are X, Y, Z ∈ {1, . . . , p− 1} such that Xn + Yn ≡ Zn (mod p).

Proof of Theorem 1.3 assuming Schur’s theorem (Theorem 1.2). We write
(Z/pZ)× for the group of nonzero residues mod p under multi-
plication. Let H be the subgroup of n-th powers in (Z/pZ)×. The
index of H in (Z/pZ)× is at most n. So the cosets of H partition
{1, 2, . . . , p − 1} into at most n sets. By the finitary statement of
Schur’s theorem (Theorem 1.2), for p large enough, there is a solu-
tion to

x + y = z in Z

in one of the cosets of H, say aH for some a ∈ (Z/pZ)×. Since H
consists of n-th powers, we have x = aXn, y = aYn, and z = aZn for
some X, Y, Z ∈ (Z/pZ)×. Thus

aXn + aYn ≡ aZn (mod p).

Hence
Xn + Yn ≡ Zn (mod p)

as desired.

Now let us prove Theorem 1.2 by deducing it from a similar
sounding result about coloring the edges of a complete graph. The
next result is a special case of Ramsey’s theorem.

Theorem 1.4. For every positive integer r, there is some integer N = N(r) Ramsey (1929)

such that if the edges of KN , the complete graph on N vertices, are colored
with r colors, then there is always a monochromatic triangle.

frank ramsey (1903–1930) had made
major contributions to mathematical
logic, philosophy, and economics,
before his untimely death at age 26

after suffering from chronic liver
problems.

Proof. We use induction on r. Clearly N(1) = 3 works for r = 1. Let
r ≥ 2 and suppose that the claim holds for r− 1 colors with N = N′.
We will prove that taking N = r(N′ − 1) + 2 works for r colors..

Suppose we color the edges of a complete graph on r(N′ − 1) + 2
vertices using r colors. Pick an arbitrary vertex v. Of the r(N′ − 1) + 1
edges incident to v, by the pigeonhole principle, at least N′ edges in-
cident to v have the same color, say red. Let V0 be the vertices joined
to v by a red edge. If there is a red edge inside V0, we obtain a red
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triangle. Otherwise, there are at most r − 1 colors appearing among
|V0| ≥ N′ vertices, and we have a monochromatic triangle by induc-
tion.

We are now ready to prove Schur’s theorem by setting up a graph
whose triangles correspond to solutions to x + y = z, thereby allow-
ing us to “transfer” the above result to the integers.

i j kφ(j− i) φ(k− j)

φ(k− i)

Proof of Schur’s theorem (Theorem 1.2). Let φ : [N] → [r] be a coloring.
Color the edges of a complete graph with vertices {1, . . . , N + 1} by
giving the edge {i, j} with i < j the color φ(j − i). By Theorem 1.4,
if N is large enough, then there is a monochromatic triangle, say on
vertices i < j < k. So φ(j− i) = φ(k− j) = φ(k− i). Take x = j− i,
y = k− j, and z = k− i. Then φ(x) = φ(y) = φ(z) and x + y = z, as
desired.

Notice how we solved a number theory problem by moving over
to a graph theoretic setup. The Ramsey theorem argument in Theo-
rem 1.4 is difficult to do directly inside the integers. Thus we gained
greater flexibility by considering graphs. Later on we will see other
more sophisticated examples of this idea, where taking a number
theoretic problem to the land of graph theory gives us a new perspec-
tive.

1.2 Highlights from additive combinatorics

Schur’s theorem above is one of the earliest examples of an area now
known as additive combinatorics, which is a term coined by Terry Green (2009)

Tao in the early 2000’s to describe a rapidly growing body of math-
ematics motivated by simple-to-state questions about addition and
multiplication of integers. The problems and methods in additive
combinatorics are deep and far-reaching, connecting many different
areas of mathematics such as graph theory, harmonic analysis, er-
godic theory, discrete geometry, and model theory. The rest of this
section highlights some important developments in additive combi-
natorics in the past century.

In the 1920’s, van der Waerden proved the following result about
monochromatic arithmetic progressions in the integers.

Theorem 1.5 (van der Waerden’s theorem). If the integers are colored B. L. van der Waerden, Beweis einer
Baudetschen Vermutung. Nieuw
Arch. Wisk. 15, 212–216, 1927.

with finitely many colors, then one of the color classes must contain arbi-
trarily long arithmetic progressions.

Remark 1.6. Having arbitrarily long arithmetic progressions is very
different from having infinitely long arithmetic progressions. As an
exercise, show that one can color the integers using just two colors so
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that there are no infinitely long monochromatic arithmetic progres-
sions.

In the 1930’s, Erdős and Turán conjectured a stronger statement, Erdős and Turán (1936)

that any subset of the integers with positive density contains arbitrar-
ily long arithmetic progressions. To be precise, we say that A ⊆ Z

has positive upper density if

lim sup
N→∞

|A ∩ {−N, . . . , N}|
2N + 1

> 0.

(There are several variations of this definition—the exact formulation
is not crucial.)

endre szemerédi (1940– ) received
the prestigious Abel Prize in 2012

“for his fundamental contributions to
discrete mathematics and theoretical
computer science, and in recognition
of the profound and lasting impact of
these contributions on additive number
theory and ergodic theory.”

In the 1950’s, Roth proved the conjecture for 3-term arithmetic
progression using Fourier analytic methods. In the 1970’s, Szemerédi
fully settled the conjecture using combinatorial techniques. These are
landmark theorems in the field. Much of what we will discuss are
motivated by these results and the developments around them.

Theorem 1.7 (Roth’s theorem). Every subset of the integers with positive Roth (1953)
upper density contains a 3-term arithmetic progression.

Theorem 1.8 (Szemerédi’s theorem). Every subset of the integers with Szemerédi (1975)

positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi’s proof was a combinatorial
tour de force. This figures is taken
from the introduction of his paper
showing the logical dependencies of his
argument.

Szemerédi’s theorem is deep and intricate. This important work
led to many subsequent developments in additive combinatorics.
Several different proofs of Szemerédi’s theorem have since been
discovered, and some of them have blossomed into rich areas of
mathematical research. Here are some the most influential modern
proofs of Szemerédi’s theorem (in historical order):

• The ergodic theoretic approach (Furstenberg)

Furstenberg (1977)
• Higher-order Fourier analysis (Gowers)

Gowers (2001)• Hypergraph regularity lemma (Rödl et al./Gowers)
Rödl et al. (2005)
Gowers (2007)Another modern proof of Szemerédi’s theorem results from the

density Hales–Jewett theorem, which was originally proved by Fursten-
berg and Katznelson using ergodic theory, and subsequently a new Furstenberg and Katznelson (1991)

Polymath (2012)

All subsequent Polymath Project papers
are written under the pseudonym
D. H. J. Polymath, whose initials stand
for “density Hales–Jewett.”

combinatorial proof was found in the first successful Polymath
Project, an online collaborative project initiated by Gowers.

The relationships between these disparate approaches are not yet
completely understood, and there are many open problems, espe-
cially regarding quantitative bounds. A unifying theme underlying
all known approaches to Szemerédi’s theorem is the dichotomy be- Tao (2007)

tween structure and pseudorandomness. We will later see different

https://mathscinet.ams.org/mathscinet-getitem?mr=1574918
https://www.abelprize.no/nyheter/vis.html?tid=54138
https://mathscinet.ams.org/mathscinet-getitem?mr=51853
https://mathscinet.ams.org/mathscinet-getitem?mr=369312
https://mathscinet.ams.org/mathscinet-getitem?mr=498471
https://mathscinet.ams.org/mathscinet-getitem?mr=1844079
https://mathscinet.ams.org/mathscinet-getitem?mr=2167756
https://mathscinet.ams.org/mathscinet-getitem?mr=2373376
https://mathscinet.ams.org/mathscinet-getitem?mr=1191743
https://mathscinet.ams.org/mathscinet-getitem?mr=2912706
https://mathscinet.ams.org/mathscinet-getitem?mr=2334204
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facets of this dichotomy both in the context of graph theory as well as
in number theory.

Here are a few other important subsequent developments to Sze-
merédi’s theorem.

Instead of working over subsets of integers, let us consider subsets
of a higher dimensional lattice Zd. We say that A ⊂ Zd has positive
upper density if

lim sup
N→∞

|A ∩ [−N, N]d|
(2N + 1)d > 0

(as before, other similar definitions are possible). We say that A con-
tains arbitrary constellations if for every finite set F ⊂ Zd, there is
some a ∈ Zd and t ∈ Z>0 such that a + t · F = {a + tx : x ∈ F} is
contained in A. In other words, A contains every finite pattern, each
consisting of some finite subset of the integer grid allowing dilation
and translation. The following multidimensional generalization of
Szemerédi’s theorem was proved by Furstenberg and Katznelson ini-
tially using ergodic theory, though a combinatorial proof was later
discovered as a consequence of the hypergraph regularity method
mentioned earlier.

Theorem 1.9 (Multidimensional Szemerédi theorem). Every subset of Furstenberg and Katznelson (1978)

Zd of positive upper density contains arbitrary constellations.

For example, the theorem implies that every subset of Zd of pos-
itive upper density contains a 10 × 10 set of points that form an
axis-aligned square grid.

There is also a polynomial extension of Szemerédi’s theorem. Let
us first state a special case, originally conjectured by Lovász and
proved independently by Furstenberg and Sárkőzy.

Theorem 1.10. Any subset of the integers with positive upper density Furstenberg (1977)

Sárközy (1978)contains two numbers differing by a square.

In other words, the set always contains {x, x + y2} for some x ∈ Z

and y ∈ Z>0. What about other polynomial patterns? The following
polynomial generalization was proved by Bergelson and Leibman.

Theorem 1.11 (Polynomial Szemerédi theorem). Suppose A ⊂ Z Bergelson and Leibman (1996)

has positive upper density. If P1, . . . , Pk ∈ Z[X] are polynomials with
P1(0) = · · · = Pk(0) = 0, then there exist x ∈ Z and y ∈ Z>0 such that
x + P1(y), . . . , x + Pk(y) ∈ A.

We leave it as an exercise to formulate a common extension of the
above two theorems (i.e., a multidimensional polynomial Szemerédi
theorem). Such a theorem was also proved by Bergelson and Leib-
man.

https://mathscinet.ams.org/mathscinet-getitem?mr=531279
https://mathscinet.ams.org/mathscinet-getitem?mr=498471
https://mathscinet.ams.org/mathscinet-getitem?mr=466059
https://mathscinet.ams.org/mathscinet-getitem?mr=1325795
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We will not cover the proof of Theorems 1.9 and 1.11. In fact,
currently the only known general proof of the polynomial Szemerédi
theorem uses ergodic theory, though for special cases there are some
recent exciting developments. Peluse (2019+)

Building on Szemerédi’s theorem as well as other important de-
velopments in number theory, Green and Tao proved their famous
theorem that settled an old folklore conjecture about prime numbers.
Their theorem is considered one of the most celebrated mathematical
results this century.

Theorem 1.12 (Green–Tao theorem). The primes contain arbitrarily long Green and Tao (2008)

arithmetic progressions.

We will discuss many central ideas behind the proof of the Green–
Tao theorem. See the reference on the right for a modern exposition Conlon, Fox, and Zhao (2014)

of the Green–Tao theorem emphasizing the graph theoretic perspec-
tive, and incorporating some simplifications of the proof that have
been found since the original work.

1.3 What’s next?

One of our goals is to understand two different proofs of Roth’s
theorem, which can be rephrased as:

Theorem 1.13 (Roth’s theorem). Every subset of [N] that does not con-
tain 3-term arithmetic progressions has size o(N).

Roth originally proved his result using Fourier analytic techniques,
which we will see in the second half of this book. In the 1970’s, lead-
ing up to Szemerédi’s proof of his landmark result, Szemerédi de- Szemerédi (1978)

veloped an important tool known as the graph regularity lemma.
Ruzsa and Szemerédi used the graph regularity lemma to give a new Ruzsa and Szemerédi (1978)

graph theoretic proof of Roth’s theorem. One of our first goals is to
understand this graph theoretic proof.

As in the proof of Schur’s theorem, we will formulate a graph
theoretic problem whose solution implies Roth’s theorem. This topic
fits nicely in an area of combinatorics called extremal graph theory. A
starting point (historically and also pedagogically) in extremal graph
theory is the following question:

Question 1.14. What is the maximum number of edges in a triangle-
free graph on n vertices?

This question is relatively easy, and it was answered by Mantel in
the early 1900’s (and subsequently rediscovered and generalized by
Turán). It will be the first result that we shall prove next. However,
even though it sounds similar to Roth’s theorem, it cannot be used to

https://arxiv.org/abs/1909.00309
https://mathscinet.ams.org/mathscinet-getitem?mr=2415379
https://mathscinet.ams.org/mathscinet-getitem?mr=3285854
https://mathscinet.ams.org/mathscinet-getitem?mr=540024
https://mathscinet.ams.org/mathscinet-getitem?mr=519318
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deduce Roth’s theorem. Later on, we will construct a graph that cor-
responds to Roth’s theorem, and it turns out that the right question
to ask is:

Question 1.15. What is the maximum number of edges in an n-vertex
graph where every edge is contained in a unique triangle?

This innocent looking question turns out to be incredible myste-
rious. We are still far from knowing the truth. We will later prove,
using Szemerédi’s regularity lemma, that any such graph must have
o(n2) edges, and we will then deduce Roth’s theorem from this graph
theoretic claim.
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