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The sum-product problem

In this chapter, we consider how sets behave under both addition and
multiplication. The main problem, called the sum-product problem, is
the following: can A + A and A · A = {ab : a, b ∈ A} both be small
for the same set A?

We take an example A = [N]. Then |A + A| = 2N − 1, but it
turns out that the product set has a large size, |A · A| = N2−o(1). The
problem of determining the size of the product set is known as Erdős
multiplication table problem. One can also see that if A is a geometric Ford (2008)

progression, then A · A is small, yet A + A is large. The main conjec-
ture concerning the sum-product problem says that either the sum set
or the product set has the size very close to the maximum.

Conjecture 8.1 (Erdős–Szemerédi’s conjecture). For every finite subset Erdős and Szemerédi (1983)

A of R, we have

max {|A + A|, |A · A|} ≥ |A|2−o(1)

In this chapter, we will see two proofs of lower bounds on the
sum-product problem. To do this, we first develop some tools.

8.1 Crossing number inequality

The crossing number cr(G) of a graph G is defined to be the min-
imum number of crossings in a planar drawing of G with curves.
Given a graph with many edges, how big must its crossing number
be?

Theorem 8.2 (Crossing number inequality). If G = (V, E) is a graph Ajtai, Chvátal, Newborn and Szemerédi
(1982)
Leighton (1984)

satisfying |E| ≥ 4|V|, then cr(G) ≥ c|E|3/|V|2 for some constant c > 0.

It follows directly that every n-vertex graph with Ω(n2) edges has
Ω(n4) crossings.

Proof of Theorem 8.2. For any connected planar graph with at least
one cycle, we have 3|F| ≤ 2|E|, with |F| denoting the number of
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faces. The inequality follows from double-counting of faces using
that every face is adjacent to at least three edges and that every edge
is adjacent to at most two faces. Applying Euler’s formula, we get Let G be a finite, connected, planar

graph and suppose that G is drawn in
the plane without any edge intersection.
Euler’s formula states |V| − |E|+ |F| =
2.

|E| ≤ 3|V| − 6. Therefore |E| ≤ 3|V| holds for every planar graph
G including ones that are not connected or do not have a cycle. Thus
we have cr(G) > 0 if |E| > 3|V|.

Suppose G satisfies |E| > 3|V|. Since we can get a planar graph by
deleting each edge that witnesses a crossing, we have |E| − cr(G) ≥
3|V|. Therefore

cr(G) ≥ |E| − 3|V|. (8.1)

In order to get the desired inequality, we use a trick from the prob-
abilistic method. Let p ∈ [0, 1] be some real number to be deter-
mined and let G′ = (V′, E′) be a graph obtained by randomly
keeping each vertex of G with probability p iid. By (8.1), we have
cr(G′) ≥ |E′| − 3|V′| for every G′. Therefore the same inequality must
hold if we take the expected values of both sides:

E cr(G′) ≥ E|E′| − 3E|V′|.

One can see that E|E′| = p2|E| since an edge remains if and only if
both of its endpoints are kept. Similarly E|V′| = p|V|. By keeping the
same drawing, we get the inequality p4 cr(G) ≥ E cr(G′). Therefore
we have

cr(G) ≥ p−2|E| − 3p−3|V|.

Finally we get the desired inequality by setting p ∈ [0, 1] so that
4p−3|V| = p−2|E|, which can be done from the condition |E| ≥
4|V|.

8.2 Incidence geometry

Another field in mathematics related to the sum-product problem is
incidence geometry. The incidence between the set of points P and
the set of lines L is defined as

I(P ,L) = |{(p, `) ∈ P ×L : p ∈ `}|

What’s the maximum number of incidences between n points and n
lines? One trivial upper bound is |P||L|. We can get a better bound
by using the fact that every pair of points is determined by at most
one line:

|P|2 ≥ #{(p, p′, `) ∈ P ×P ×L : pp′ ∈ ` , p 6= p′}
≥ ∑

`∈L
|P ∪ `|(|P ∪ `| − 1)

≥ I(P ,L)2

|L|2 − I(P ,L).
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The last inequality follows from Cauchy–Schwarz inequality. There-
fore, we get I(P ,L) ≤ |P||L|1/2 + |L|. By duality of points and
lines, namely by the projection that puts points to lines, we also get
I(P ,L) ≤ |L||P|1/2 + |P|. These inequalities give us that n points
and n lines have O(n3/2) incidences. The order 3/2 can be found in
the first chapter, when we examine ex(n, C4) = Θ(n3/2). The proof
we will give is basically the same. Recall that the bound was tight
and the construction came from finite fields. On the other hand, in
the real plane, n3/2 is not tight, as we will see in the next theorem.

Theorem 8.3 (Szemerédi–Trotter). For any set P of points and L of lines Szemerédi and Trotter (1983)

in R2,
I(P ,L) = O(|P|2/3|L|3/2 + |P|+ |L|).

Corollary 8.4. For n points and n lines in R2, the number of incidences is
O(n4/3).

Example 8.5. The bounds in both Theorem 8.3 and Corollary 8.4 are
best possible up to a constant factor. Here is an exapmle showing
that Corollary 8.4 is tight. Let P = [k]× [2k2] and L = {y = mx + b :
m ∈ [k], b ∈ [k2]}. Then every line in L contains k points from P , so
I = k4 = Θ(n4/3).

Proof of Theorem 8.3. we first get rid of all lines in L which contain
at most one point in P . One can see that these lines contribute to at
most |L| incidences.

P and L

−→

graph G

Figure 8.1: Construction of graph G

Now we can assume that every line in L contains at least two
points of P . We construct a graph G as the following: first, we assign
vertices to all points in P . For every line in L, we assign an edge
between consecutive points of P lying on the line.

Since a line with k incidences has k− 1 ≥ k/2 edges, we have the
inequality |E| ≥ I(P ,L)/2. If I(L,P) ≥ 8|P| holds (otherwise, we
get I(P ,L) . |P|), we can apply Theorem 8.2.

cr(G) &
|E|3
|V|2 &

I(P ,L)3

|P|2 .

Moreover cr(G) ≤ |L|2 since every pair of lines intersect in at most
one point. We rearrange and get I(P ,L) . |P|2/3|L|2/3. Therefore we
get that I(P ,L) . |P|2/3|L|3/2 + |P|+ |L|. The two linear parts are
needed for the cases that we excluded in the proof.

One can notice that we use the topological property of the real
plane when we apply Euler’s formula in the proof of Theorem 8.2.
Now we will present one example of how the sum-product problem
is related to incidence geometry.

Theorem 8.6 (Elekes). If A ⊂ R, then |A + A||A · A| & |A|5/2. Elekes (1997)
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Corollary 8.7. If A ⊂ R, then max{|A + A|, |A · A|} & |A|5/4.

Proof of Theorem 8.6. Let P = {(x, y) : x ∈ A + A, y ∈ A · A} and
L = {y = a(x − a′) : a, a′ ∈ A}. For a line y = a(x − a′) in L,
(a′ + b, ab) ∈ P is on the line for all b ∈ A, so each line in L contains
|A| incidences. By definition of P and L, we have

|P| = |A + A||A · A| and |L| = |A|2.

By Theorem 8.3, we obtain

|A|3 ≤ I(P ,L) ≤ |P|3/2|L|3/2 + |P|+ |L|
. |A + A|3/2|A · A|3/2|A|4/3.

Rearranging gives the desired result.

8.3 Sum-product via multiplicative energy

In this chapter, we give a different proof that gives a better lower
bound.

Theorem 8.8 (Solymosi). If A ⊂ R>0, then Solymosi (2009)

|A · A||A + A|2 ≥ |A|4
4dlog2 |A|e

Corollary 8.9. If A ⊂ R, then

max {|A + A|, |A · A|} ≥ |A|4/3

2dlog2 |A|e
1/3

We define multiplicative energy to be

E×(A) = |{(a, b, c, d) ∈ A4 : there exists some λ ∈ R such that (a, b) = λ(c, d)}|

Note that the multiplicative energy is a multiplicative version of
additive energy. We can see that if A has a small product set, then the
multiplicative energy is large.

E×(A) = ∑
x∈A·A

|{(a, b) ∈ A2 : ab = x}|2

≥ |A|4
|A · A|

The inequality follows from Cauchy–Schwarz inequality. Therefore it
suffices to show

E×(A)

dlog2 |A|e
≤ 4|A · A|2.

https://mathscinet.ams.org/mathscinet-getitem?mr=2538014
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Proof of Theorem 8.8. We use the dyadic decomposition method in this
proof. Let A/A be the set {a/b : a, b ∈ A}.

E×(A) = ∑
s∈A/A

|(s · A) ∩ A|2

=
dlog2 |A|e

∑
i=0

∑
s∈A/A

2i≤((s·A)∩A)<2i+1

|(s · A) ∩ A|2

By pigeonhole principal, there exists some k such that

E×(A)

dlog2 |A|e
≤ ∑

s∈A/A
2k≤|(s·A)∩A|<2k+1

|(s · A) ∩ A|2.

We denote D = {s : 2k ≤ |(s · A) ∩ A| < 2k+1} and we sort the
elements of D as s1 < s2 < · · · < sm. Then one has

E×(A)

dlog2 |A|e
≤ ∑

s∈D
|(s · A) ∩ A|2 ≤ |D|22k+2.

For each i ∈ [m] let `i be a line y = six and let `m+1 be the vertical ray
x = min(A) above `m.

Let Lj = (A × A) ∩ `j, then we have |Lj + Lj+1| = |Lj||Lj+1|.
Moreover, the sets Lj + Lj+1 are disjoint for different j, since they
span in disjoint regions.

A

A

`1

`2

`m−1`m

`m+1

Figure 8.2: Illustration of Lj + Lj+1

We can get the lower bound of |A+ A|2 by summing up |Lj + Lj+1|
for all j.

|A + A|2 = |A× A + A× A|

≥
m

∑
j=1
|Lj + Lj+1|

=
m

∑
j=1
|Lj||Lj+1|

≥ m22k ≥ E×(A)

4dlog2 |A|e

Combining the above inequality with E×(A) ≥ |A|4/|A · A|, we reach
the conclusion.
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