
18.314 SOLUTIONS TO PRACTICE FINAL EXAM

(for Final Exam of December 15, 2014)

∑

1. (a) (5 points) Let F (x) = n≥0
f(n)xn. Multiply the recurrence by

xn+2 and sum on n ≥ 0 to get

F (x)− 2− 4x = 4x(F (x)− 2)− 2x2F (x),

so

2
F (x) =

− 4x

1− 4x+ 2x2

=
1

1− (2 +
√
2)x

+
1

1− (2−
√
2)x

.

Thus
f(n) = (2 +

√
2)n + (2−

√
2)n.

(b) (5 points) We have 2
√

− 2 = 0.5857 · · · , so 0 < (2−
√
2)n < 1 for

all n ≥ 1. It follows that

⌊(2 +
√
2)n⌋ = f(n)− 1.

Now f(1) is even and f(n + 2) = 2(2f√(n + 1)− f(n)) for n ≥ 0,
so f(n) is even for n ≥ 1. Thus ⌊(2 + 2)n⌋ is odd for n ≥ 1. We
can also see that ⌊(2 +

√
2)0⌋ = 1, which is also odd.

2. This is a situation for the exponential formula. Partition the set [n]
into blocks. On each block of odd size k place a cycle in (k− 1)! ways.
In each of even size place a cycle and then color red or blue in 2(k−1)!
ways. By the exponential formula,

(

∑ xk

F (x) = exp (k
k odd

− 1)!
k!

+ 2
∑

k even

(k − 1)!
xk

k!

)

= exp

(

∑

k≥1

xk

k
+
∑

k≥1

x2k
)

2k
(

1
= exp − log(1− x)−

2
log(1− x2)

)

=
1

(1− x)
√
1− x2

.
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3. (a) Each tiling is a sequence of the following “primes”: a 2×1 rectan-
gle divided into two 1×1 squares, and a 2×k rectangle for k ≥ 1.
There are two primes of length one, and one prime of each length
k ≥ 2. Hence

1
F (x) =

1− (2x+ x2 + x3 + x4 + · · · )
1

=
1− x− x

1−x

1
=

− x
.

1− 3x+ x2

Note, One can easily deduce from this generating function that
f(n) = F2n+1 (a Fibonacci number), but this was not part of the
problem.

(b) First consider those tilings that consist only of 2×k rectangles, k ≥
1. The sequence of lengths of these rectangles form a composition
of n. Thus the number a(n) of such tilings a(n) of a 2

n

×n rectangle
is 2 −1 (n ≥ 1), the number of compositions of n. Therefore

∑

A(x) := a(n)xn

∑

n≥1

= 2n−1xn

n≥1

x
= .

1− 2x

Now consider those tilings that contain no 2× k rectangle. They
have a horizontal line down the middle. Above and below the line
are rectangles whose lengths form a composition of n. There are
(2n−1)2 such pairs of compositions. Hence if b(n) is the number of
such tilings of a 2× n rectangle, then

∑

B(x) := b(n)xn

∑

n≥1

= (2n−1)2xn

n≥1

x
= .

1− 4x

An arbitrary tiling of a 2 × n rectangle consists of a sequence of
tilings beginning with those counted by a(n) (but which may be
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empty at this first step), then those counted by b(n), then by a(n),
etc., some finite number of times. Therefore

G(x) = (1 + A(x))(B(x) +B(x)A(x) +B(x)A(x)B(x) + · · · )
∑

= (1 + A(x)) (B(x)A(x))j(1 +B(x))
j≥0

(1 + A(x))(1 +B(x))
= .

1− A(x)B(x)

Substituting A(x) = x/(1 − 2x), B(x) = x/(1 − 4x), and simpli-
fying gives

(1
G(x) =

− x)(1 − 3x)
.

1− 6x+ 7x2

4. If a spanning tree T does not contain the identified edge e, then there
are m+n−2 choices, i.e., remove any of the m+n−2 remaining edges.
If T does contain e, then we can remove any of the remaining m − 1
edges of the m-cycle and any of the n− 1 remaining n− 1 edges of the
n-cycle, so (m− 1)(n− 1) choices in all. Hence

κ(G) = m+ n− 2 + (m− 1)(n− 1) = mn− 1.

A somewhat more direct argument is to remove any edge of the m-
cycle and any edge of the n-cycle in mn ways. This gives a spanning
tree except when we choose the identified edge e both times, so we get
mn− 1 trees in all.

5. We know (Exercise 11.12 on page 266, done in class) that G has a
complete matching M . When we remove M from G we still have a
regular bipartite graph (of degree d − 1 ≥ 1), so we have another
matching M ′ disjoint from M . The union of M and M ′ is a disjoint
union of cycles [why?].

6. The chromatic polynomial of a 4-cycle C4 was computed in class and
is easy to do in several different ways. We get

χ 4 3 2
C4
(n) = n − 4n + 6n − 3n.

For each of the other four vertices we have n−2 choices of colors. Hence

χG(n) = (n4 − 4n3 + 6n2 − 3n)(n− 2)4.
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7. (a) If a planar e
∑

mbedding without isthmuses has fi faces with i sides,
then 2E = ifi. (See equation (12.2) on page 280.) Hence

2E = 3 + 4 + 5 + 6 + 7 + 8 = 33,

contradicting that E is an integer.

(b) Now we get 2E = 3+4+5+6+7+8+9 = 42, so E = 21. Since
F = 7 we get from V −E+F = 2 that V = 16. To show that such
a graph actually exists, we have to construct it. For instance, we
could put the 9-sided face f on the outside and the 7-sided face
completely inside f . This leads to

9
3

4

5

6

7
8

This is by no means the only graph meeting the conditions of the
problem.

8. We claim that n = 5. We can easily two-color the edges of K4 so
that there is no monochromatic path of length three: color the edges
of a triangle red and the remaining three edges blue. Hence n ≥ 5.
Consider now K5 with vertices 1,2,3,4,5. The four cycle with edges 12,
23, 34, 14 must have two red and two blue edges; otherwise it already
has a monochromatic path of length three. If the two red edges don’t
have a common vertex then one of the paths {12, 34, 13} or {23, 14, 13}
is monochromatic. Thus we can assume that the 4-cycle has two red
edges with a common vertex and two blue edges with a common vertex.
Suppose that the red edges are 12,23 and the blue edges are 34,14. Then
one of the paths {12, 23, 35} and {34, 14, 35} is monochromatic. (I’m
sure there must be many other arguments.)
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