18.314 SOLUTIONS TO PRACTICE FINAL EXAM
(for Final Exam of December 15, 2014)

1. (a) (5 points) Let F(z) = >_, -, f(n)z". Multiply the recurrence by
2" and sum on n > 0 to get

F(z) — 2 —4x = 42(F(z) — 2) — 22 F(z),
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(b) (5 points) We have 2 — /2 = 0.5857---, 50 0 < (2 —/2)" < 1 for
all n > 1. It follows that

[(2+V2)"] = f(n)~ L

Now f(1) is even and f(n+2) = 2(2f(n+ 1) — f(n)) for n > 0,
so f(n) is even for n > 1. Thus [ (24 v/2)"] is odd for n > 1. We
can also see that [ (24 1/2)°] = 1, which is also odd.

2. This is a situation for the exponential formula. Partition the set [n]
into blocks. On each block of odd size k place a cycle in (k — 1)! ways.
In each of even size place a cycle and then color red or blue in 2(k —1)!
ways. By the exponential formula,

F(z) = exp(Z( —1'—+22 —1'—)
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3.

(a)

Each tiling is a sequence of the following “primes”: a 2 x 1 rectan-
gle divided into two 1 x 1 squares, and a 2 x k rectangle for k > 1.
There are two primes of length one, and one prime of each length
k > 2. Hence

1
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NOTE, One can easily deduce from this generating function that
f(n) = Fy,41 (a Fibonacci number), but this was not part of the
problem.

First consider those tilings that consist only of 2x k rectangles, k >
1. The sequence of lengths of these rectangles form a composition
of n. Thus the number a(n) of such tilings a(n) of a 2xn rectangle
is 27! (n > 1), the number of compositions of n. Therefore

Az) = Z a(n)z"
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Now consider those tilings that contain no 2 x k rectangle. They
have a horizontal line down the middle. Above and below the line
are rectangles whose lengths form a composition of n. There are
(2712 such pairs of compositions. Hence if b(n) is the number of
such tilings of a 2 x n rectangle, then

B(z) = Z b(n)x"
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An arbitrary tiling of a 2 x n rectangle consists of a sequence of
tilings beginning with those counted by a(n) (but which may be




empty at this first step), then those counted by b(n), then by a(n),
etc., some finite number of times. Therefore

G(x) = (1+ A(x)(B(z) + B(z)A(x) + B(z)A(z)B(z) + - -)
= (1+A@))_(B@)A@)Y 1+ B(x))

_ (1L+A@)( + B(x))
1 — A(x)B(x)

Substituting A(x) = z/(1 — 2x), B(z) = z/(1 — 4z), and simpli-
fying gives
(1 —2)(1 —3x)

CO) =T

4. If a spanning tree T" does not contain the identified edge e, then there
are m-+n — 2 choices, i.e., remove any of the m+n —2 remaining edges.
If T does contain e, then we can remove any of the remaining m — 1
edges of the m-cycle and any of the n — 1 remaining n — 1 edges of the
n-cycle, so (m — 1)(n — 1) choices in all. Hence

K(G)=m+n—-24+(m—-1)(n—1)=mn— 1.

A somewhat more direct argument is to remove any edge of the m-
cycle and any edge of the n-cycle in mn ways. This gives a spanning
tree except when we choose the identified edge e both times, so we get
mn — 1 trees in all.

5. We know (Exercise 11.12 on page 266, done in class) that G has a
complete matching M. When we remove M from G we still have a
regular bipartite graph (of degree d — 1 > 1), so we have another
matching M’ disjoint from M. The union of M and M’ is a disjoint
union of cycles [why?].

6. The chromatic polynomial of a 4-cycle Cy was computed in class and
is easy to do in several different ways. We get

xeu(n) = n* —4n® + 6n? — 3n.
For each of the other four vertices we have n—2 choices of colors. Hence

xa(n) = (n* —4n® + 6n° — 3n)(n — 2)*.



7. (a) If a planar embedding without isthmuses has f; faces with ¢ sides,
then 2E = > if;. (See equation (12.2) on page 280.) Hence

2E =3+4+5+6+7+8=33,

contradicting that F is an integer.

(b) Now we get 2E =34+4+5+6+7+8+9 =42, s0 £ = 21. Since
F =7we get from V—FE+ F = 2 that V = 16. To show that such
a graph actually exists, we have to construct it. For instance, we
could put the 9-sided face f on the outside and the 7-sided face
completely inside f. This leads to

N

This is by no means the only graph meeting the conditions of the
problem.

8. We claim that n = 5. We can easily two-color the edges of K, so
that there is no monochromatic path of length three: color the edges
of a triangle red and the remaining three edges blue. Hence n > 5.
Consider now K5 with vertices 1,2,3,4,5. The four cycle with edges 12,
23, 34, 14 must have two red and two blue edges; otherwise it already
has a monochromatic path of length three. If the two red edges don’t
have a common vertex then one of the paths {12, 34,13} or {23, 14, 13}
is monochromatic. Thus we can assume that the 4-cycle has two red
edges with a common vertex and two blue edges with a common vertex.
Suppose that the red edges are 12,23 and the blue edges are 34,14. Then
one of the paths {12,23,35} and {34, 14,35} is monochromatic. (I'm
sure there must be many other arguments.)
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