18.330 :: Homework 4 :: Spring 2012 :: Due Tuesday April 3

- 1. (1pt) Compute 3^{1/3} to 10 digits of accuracy using Newton's method. Explain how you obtained your answer.
- 2. One method to find the solution of the equation $x = \phi(x)$ for some function ϕ is to use the *fixed point iteration* $x_{k+1} = \phi(x_k)$.
 - a) (1pt) Convergence occurs when ϕ is a contractive mapping, i.e., for all $x \neq y$ we have

$$\phi(x) - \phi(y)| < |x - y|.$$

Show that if $|\phi'(x)| < 1$ for all x, then ϕ is a contractive mapping.

- b) (.5pt) Find a function ϕ for which $x = \phi(x)$ has a unique solution, yet the fixed point iteration diverges.
- c) (1pt) Consider a function f(x) with a single root x^* such that $f'(x) \neq 0$ in a neighborhood of x^* . Cast Newton's iteration as a fixed-point iteration $x_{k+1} = \phi(x_k)$. Use part a) to find a criterion on f, f', and f'' in a neighborhood of x^* , which guarantees that the iteration will converge to a fixed point.
- 3. (2.5pts) Use Newton's method in its multivariable form to find a solution of

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 &= 100, \\ x_1 x_2 x_3 &= 1, \\ x_1 - x_2 - \sin x_3 &= 0. \end{aligned}$$

4. Consider Newton's method for minimizing F(x):

$$x_{k+1} = x_k - \frac{F'(x_k)}{F''(x_k)}.$$

In what follows we'll take $F(x) = 1 + \int_0^x \operatorname{atan}(y) \, dy$.

- a) (.5pt) Show that *F* is strictly convex, i.e. F''(x) > 0. (Strictly convex functions always have a unique minimum.)
- b) (.5pt) Find one value of the starting guess x_0 for which Newton's method converges, and one for which it diverges. (Convexity does not ensure convergence).
- c) (1pt) Explain briefly how you would design a foolproof method for finding the minimum of a convex function F, in an interval [a, b] for which F'(a) < 0 and F'(b) > 0.
- 5. (2pts) You would like to precisely determine the resistance of an electrical component. The advertised value is $R = 2\Omega$ (Ohms). When connecting the resistance to a battery, you measure the voltage and current with a (cheap) multimeter as V = 2.9V (Volts) and I = 1.4A (Amps) respectively. You figure that Ohm's law V = RI is not exactly satisfied because there are errors both in the measured values of V, I, and in the advertised value of R. Find the "best" fit for V, I, and R by finding the minimum value of the function

$$F(V, I, R) = (V - RI)^{2} + 10(R - 2)^{2} + 10(V - 2.9)^{2} + 10(I - 1.4)^{2}$$

using Newton's method.

18.330 Introduction to Numerical Analysis Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.