
Chapter 7

Spectral Interpolation,
Differentiation, Quadrature

7.1 Interpolation

7.1.1 Bandlimited interpolation

While equispaced points generally cause problems for polynomial interpola-
tion, as we just saw, they are the natural choice for discretizing the Fourier
transform. For data on xj = jh, j ∈ Z, recall that the semidiscrete Fourier
transform (SFT) and its inverse (ISFT) read

f̂(k) = h
∑ π/h

e−ikxj
1

fj, fj =

∫
ikxj ˆe f(k) dk.

2π
∈Z −π/hj

The idea of spectral interpolation, or bandlimited interpolation, is to evaluate
the ISFT formula above at some point x not equal to one of the xj.

Definition 21. (Fourier/spectral/bandlimited interpolation on R) Let xj =

jh, j ∈ Z ˆ. Consider f : R 7→ R, its restriction fj = f(xj), and the SFT f(k)
of the samples fj. Then the spectral interpolant is

1 π/h

p(x) = ikx ˆe f(k) dk.
2π

∫
−π/h

We can view the formula for p(x) as the inverse Fourier transform of the
ˆcompactly supported function equal to f(k) for k ∈ [−π/h, π/h], and zero
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CHAPTER 7. SPECTRAL INTERPOLATION, DIFFERENTIATION, QUADRATURE

otherwise. When the Fourier transform of a function is compactly supported,
we say that that function is bandlimited, hence the name of the interpolation
scheme.

Example 22. Let

=

{
1 if j = 0;

fj = δ0j 0 if j = 0.

ˆThen the SFT is f(k) = h for k ∈ [−π/h, π/h] as we saw previously. Extend
it to k ∈ R by zero outside of [−π/h, π/h]. Then

sin(πx/h)
p(x) = = sinc(πx/h).

πx/h

This function is also called the Dirichlet kernel. It vanishes at xj = jh for
j = 0, integer.

Example 23. In full generality, consider now the sequence

fj =
∑

δjkfk.
k∈Z

By linearity of the integral,

p(x) =
∑

fksinc(π(x− xk)/h).
k∈Z

The interpolant is a superposition of sinc functions, with the samples fj as
weights. Here sinc is the analogue of the Lagrange elementary polynomials
of a previous section, and is called the interpolation kernel. For this reason,
bandlimited interpolation sometimes goes by the name Fourier-sinc interpo-
lation.

(Figure here for the interpolation of a discrete step.)

In the example above we interpolate a discontinuous function, and the
result is visually not very good. It suffers from the same Gibbs effect that
we encountered earlier. The smoother the underlying f(x) which fj are the
samples of, however, the more accurate bandlimited interpolation.

In order to study the approximation error of bandlimited interpolation,
we need to return to the link between SFT and FT. The relationship be-
tween p(x) and fj is sampling, whereas the relationship between the FT
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7.1. INTERPOLATION

ˆ ˆf(k)χ[ π/h,π/h](k) and the SFT f(k) is periodization. We have already alluded−
to this correspondence earlier, and it is time to formulate it more precisely.

(Figure here; sampling and periodization)

Theorem 14. (Poisson summation formula, FT version) Let u : R 7→ R,
sufficiently smooth and decaying sufficiently fast at infinity. (We are delib-
erately imprecise!) Let vj = u(xj) for xj = jh, j ∈ Z, and

û(k) =

∫
e−ikxu(x) dx, (FT ), k

R
∈ R,

v̂(k) = h
∑

e−ikxju(xj). (SFT ), k ∈ [−π/h, π/h].
j∈Z

Then

v̂(k) =
∑ 2π

û(k +m ), k ∈ [
m

−π/h, π/h] (7.1)
h

∈Z

In some texts the Poisson summation formula is written as the special
case k = 0:

h
∑ 2

u(jh) =
∑ π

û( m).
h

j∈Z m∈Z

Exercise: use what we have already seen concerning translations and Fourier
transforms to show that the above equation implies (hence is equivalent to)
equation (7.1).

Proof. Consider the right-hand side in (7.1), and call it

2π
φ̂(k) =

∑
û(k +m ), k ∈ [−π/h, π/h].

h
m∈Z

ˆIt suffices to show that φ(k) = v̂(k), or equivalently in terms of their ISFT,
that φj = vj for j ∈ Z. The ISFT is written

1 π/h 2π
φj = )

π

∫ [
+

2 π/h m

∑
û(k m

h
∈Z

]
eikjh dk.

−
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CHAPTER 7. SPECTRAL INTERPOLATION, DIFFERENTIATION, QUADRATURE

The function u is smooth, hence integrable, and the sum over m converges
fast. So we can interchange sum and integral:

1 π/h 2π
φ ikjh
j =

2π
m

∑
û(k +m )e

∈

∫
dk.

−π h
Z /h

Now put k′ = k +m2π , and change variable:
h

1 π

φj =
∑∫ π m

h
− 2π

h ′
û(k′

2

)eik jhe−i jh
h dk′.

2π
m∈Z −π

h
−m 2π

h

The extra exponential factor e−i
2π jh
h is equal to 1 because j ∈ Z. We are

in presence of an integral over R chopped up into pieces corresponding to
sub-intervals of length 2π/h. Piecing them back together, we get

1
φj =

∫
′

û(k′)eik jhdk′,
2π R

which is exactly the inverse FT of û evaluated at xj = jh, i.e., φj = u(xj) =
vj.

The Poisson summation formula shows that sampling a function at rate
h corresponds to periodizing its spectrum (Fourier transform.) with a period
2π/h. So the error made in sampling a function (and subsequently doing
bandlimited interpolation) is linked to the possible overlap of the Fourier
transform upon periodization.

• Scenario 1. Assume supp(û) ⊂ [−π/h, π/h]. Then no error is made in
sampling and interpolating u at rate h, because nothing happens upon
2π/h-periodization and windowing into [−π/h, π/h]:

p̂(k) = û(k) ⇒ p(x) = u(x).

(Draw picture)

• Scenario 2. Now assume that û(k) is not included in [−π/h, π/h].
In general the periodization of û(k) will result in some overlap inside
[−π/h, π/h]. We call this aliasing. In that case, some information is
lost and interpolation will not be exact.
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7.1. INTERPOLATION

Scenario 1 is known as the Shannon sampling theorem: a function ban-
dlimited in [−π/h, π/h] in k space is perfectly interpolated by bandlimited
interpolation, on a grid of spacing h or greater. In signal processing h is also
called the sampling rate, because x has the interpretation of time. When h
is the largest possible rate such that no aliasing occurs, it can be referred to
as the Nyquist rate.

More generally, the accuracy of interpolation is linked to the smoothness
of u(x). If the tails û(k) are small and h is large, we can expect that the
error due to periodization and overlap won’t be too big. The following result
is a consequence of the Poisson summation formula.

Theorem 15. (Error of bandlimited interpolation) Let u have p
1

≥ 1 deriva-
tives in L (R). Let vj = u(xj) at xj = jh, j ∈ Z. Denote by p(x) the
bandlimited interpolant formed form vj. Then, as h→ 0,

π|û(k)− p̂(k)| = O(hp) |k| ≤ ,
h

and
‖u− p‖2 = O(hp−1/2).

Proof. Denote by û(k) the FT of u(x), and by v̂(k) the SFT of vj, so that
p̂(k) = v̂(k) on [−π/h, π/h]. By the Poisson summation formula (7.1),

v̂(k)− û(k) =
∑ 2π

û(k +m ), k [
h

m=0

∈ −π/h, π/h].

As we saw earlier, the smoothness condition on u imply that

|û(k)| ≤ C |k|−p.

Since
2π π 2π π 2π

k +m ∈ [− +m , +m ],
h h h h h

we have |k +m2π | ≥ |mπ |, hence
h h

2π π|û(k +m )| ≤ C ′ |m −
h h

| p,

for some different constant C ′. Summing over m = 0,

π π|v̂(k)− û(k)| ≤ C ′

m

∑
=0

|m|−p( )−p
h

≤ C ′′ ( )−p
h

≤ C ′′′ hp.

6
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CHAPTER 7. SPECTRAL INTERPOLATION, DIFFERENTIATION, QUADRATURE

One can switch back to the x domain by means of the Plancherel formula

1‖u− p‖2L2 =
2π
‖û(k)− v̂(k)‖2L2(R).

The right-hand side contains the integral of |û(k)− v̂(k)|2 over R. Break this
integral into two pieces:

• Over [−π/h, π/h], we have seen that |û(k) − v̂(k)|2 = O(h2p). The
integral is over an interval of length O(1/h), hence the L2 norm squared
is O(h2p−1). Taking a square root to get the L2 norm, we get O(hp−1/2).

• For |k| ≥ π/h, we have p̂(k) = 0, so it suffices to bound
∫

|û(k) dk
k|≥π/h |2 .|

Since |û(k)| ≤ C |k|−p, this integral is bounded by O((π/h)2p−1). Tak-
ing a square root, we again obtain a O(hp−1/2).

We have seen how to interpolate a function defined on R, but as a closing
remark let us notice that a similar notion exists for functions defined on
intervals, notably x ∈ [−π, π] or [0, 2π]. In that case, wavenumbers are
discrete, the FT is replaced by the FS, and the SFT is replaced by the DFT.
Evaluating the DFT for x not on the grid would give an interpolant:

∑N/21
eikxf̂k.

2π
k=−N/2+1

Contrast with the formula (6.8) for the IDFT. This is almost what we want,
but not quite, because the highest wavenumber k = N/2 is treated asym-

ˆmetrically. It gives rise to an unnatural complex term, even if fk is real and
ˆ ˆeven. To fix this, it is customary to set f−N/2 = fN/2, to extend the sum

from −N/2 to N/2, but to halve the terms corresponding to k = −N/2 and
N/2. We denote this operation of halving the first and last term of a sum
by a double prime after the sum symbol:

′′

Itis easy to check that this operation

∑
does not change the interpolating prop-

erty. The definition of bandlimited interpolant becomes the following in the
case of intervals.
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7.1. INTERPOLATION

Definition 22. (Spectral interpolation on [0, 2π]) Let xj = jh, j = 0, . . . , N−
1 with h = 1/N . Consider f : [0, 2π] 7→ R, its restriction fj = f(xj), and

ˆthe DFT fk of the samples fj. Then the spectral interpolant is

1
p(x) =

∑′′ N/2
eikxf̂k.

2π k=−N/2

Because p(x) is a superposition of “monomials” of the form eikx = (eix)k

for k integer, we call it a trigonometric polynomial.
The theory for interpolation by trigonometric polynomials (inside [0, 2π])

is very similar to that for general bandlimited interpolants. The only impor-
tant modification is that [0, 2π] is a periodized interval, so a function qualifies
as smooth only if it connects smoothly across x = 0 indentified with x = 2π
by periodicity. The Poisson summation formula is still the central tool, and
has a counterpart for Fourier series.

Theorem 16. (Poisson summation formula, FS version) Let u : [0, 2π] 7→ R,
sufficiently smooth. Let vj = u(θj) for θj = jh, j = 1, . . . , N , h = 2π/N ,
and

û =

∫ 2π

e−ikθk u(θ) dθ, (FS), k
0

∈ Z,

N
N N

v̂ ik
k = h

∑
e− θju(θj). (DFT ), k =

=1

− , . . . ,
2 2

j

− 1.

Then

v̂k =
m

∑ N N
ûk+mN , k = − , . . . ,

2 2
− 1. (7.2)

∈Z

(Recall that N = 2π so this formula is completely analogous to (7.1).)
h

For us, the important consequence is that if u has p derivatives in L1,
over the periodized interval [0, 2π], then the bandlimited interpolation error
is a O(hp) in the pointwise sense in k space, and O(hp−1/2) in the L2 sense.

For this result to hold it is important that u has p derivatives at the
origin as well (identified by periodicity with 2π), i.e., the function is equally
smooth as it straddles the point where the interval wraps around by pe-
riodicity.Otherwise, if u(θ) has discontinuities such as. u(2π−) = u(0+),
interpolation will suffer from the Gibbs effect.

6
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CHAPTER 7. SPECTRAL INTERPOLATION, DIFFERENTIATION, QUADRATURE

7.1.2 Chebyshev interpolation

Consider now smooth functions inside [−1, 1] (for illustration), but not nec-
essarily periodic. So the periodization j f(x + 2j) may be discontinuous.
Polynomial interpolation on equispaced

∑
points may fail because of the Runge

phenomenon, and bandlimited interpolation will fail due to Gibbs’s effect.

A good strategy for interpolation is the same trick as the one we used for
truncation in the last chapter: pass to the variable θ such that

x = cos θ.

Then x ∈ [−1, 1] corresponds to θ ∈ [0, π]. We define g(θ) = f(cos θ) with g
2π-periodic and even.

We can now consider the bandlimited interpolant of g(θ) on an equispaced
grid covering [0, 2π], like for instance

πj
θj = , where j = 1, . . . , 2N.

N

Using the definition we saw at the end of the last section (with the ”double
prime”), we get

1 N

q(θ =
∑ 2N−1

′
) eikθ

π
ĝk, ĝk = e−ikθjg(θj).

2π k=−N N

∑
j=0

By even symmetry in θ and k (why?), we can write

N

q(θ) =
∑

cos(kθ)ck,
k=0

for some coefficients ck that are formed from the samples g(θj).

Back to x, we get the sample points xj = cos(θj). They are called Cheby-
shev points. They are not equispaced anymore, and becauset they are the
projection on the x-axis of equispaced points on the unit circle, they cluster
near the edges of [−1, 1]. There are N + 1 of them, from j = 0 to N , because
of the symmetry in θ. It turns out that the xj are the extremal points of the
Chebyshev polynomial TN(x), i.e., the points in [−1, 1] where TN takes its
maximum and minimum values.
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7.1. INTERPOLATION

In terms of the variable x, the interpolant can be expressed as

N

p(x) = q(acos x) =
∑

Tn(x)cn, Tn(x) = cos(n acos x),
n=0

with the same cn as above. Since Tn(x) are polynomials of degree 0 ≤ n ≤ N ,
and p(x) interpolates f(x) at the N + 1 (non-equispaced) points xj, we are
in presence of the Lagrange interpolation polynomial for f at xj!

Now, the interesting conclusion is not so much the new formula for the in-
terpolation polynomial in terms of Tn, but that although this is a polynomial
interpolant, the error analysis is inherited straight from Fourier analysis. If
f is smooth, then g is smooth and periodic, and we saw that the bandlimited
interpolant converges very fast. The Chebyshev interpolant of f is equal to
the bandlimited interplant of g so it converges at the exact same rate (in L∞

in k or n space) — for instance O(N−p−1) when f has p derivatives (in BV).

In particular, we completely bypassed the standard analysis of error of
polynomial interpolation, and proved universal convergence for smooth f .
The factor

N

πN+1(x) =
∏

(x− xj)
j=0

that was posing problems in the error estimate then does not pose a problem
anymore, because of the very special choice of Chebyshev points cos(πj/N)
for the interpolation. Intuitively, clustering the grid points near the edges
of the interval [−1, 1] helps giving πN+1(x) more uniform values throughout
[−1, 1], hence reduces the gross errors near the edges.∏ Let us now explain the differences in the behavior of the monic polynomial

N
j=0(x−xj) for equispaced vs. Chebyshev points, and argue that Chebyshev

points are near-ideal for interpolation of smooth functions in intervals. The
discussion below is mostly taken from Trefethen, p.43. (See also the last
problem on hom∏ework 2 for an example of different analysis.)

Let p(z) = N
j=0(z − xj), where we have extended the definition of the

monic polynomial to z ∈ C. We compute

N

log |p(z)| =
∑

log ,
j

|z − xj
=0

|
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Put
N

φN(z) = (N + 1)−1
∑

log |z x
j=0

− j|.

The function φN is like an electrostatic potential, due to charges at z = xj,
each with potential (N + 1)−1 log |z − xj|. Going back to p(z) from φN is
easy:

p(z) = e(N+1)φN (z).

Already from this formula, we can see that small variations in φN will lead
to exponentially larger variations in p(z), particularly for large N .

Let us now take a limit N → ∞, and try to understand what happens
without being too rigorous. What matters most about the Chebyshev points
is their density : the Chebyshev points are the projection onto the real-axis
of a sequence of equispaced points on a circle. If the density of points on the
circle is a constant 1/(2π), then the density of points on [−1, 1] generated by
vertical projection is

1
ρCheb(x) = √ . (normalized to integrate to 1 on [

π 1− x2
−1, 1])

(This is a density in the sense that

N

∫ b

ρCheb(x) dx
a

approximately gives the number of points in [a, b].) Contrast with a uniform
distribution of points, with density

1
ρequi(x) = .

2

Then the potential corresponding to any given ρ(x) is simply

φ(z) =

∫ 1

ρ(x) log
−1

|z − x| dx.

The integral can be solved explicitly for both densities introduced above:

• For ρequi, we get

1
φequi(z) = −1 + Re((z + 1) log(z + 1)− (z − 1) log(z

2
− 1)).

It obeys φequi(0) = −1, φequi(±1) = −1 + log 2.
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7.1. INTERPOLATION

• For ρCheb, we get

z
√
z2 1

φCheb(z) = log
| − − |

.
2

This function obeys (interesting exercise) φCheb(x) = − log 2 for all
x ∈ [−1, 1] on the real axis.

The level curves of both φequiv and φCheb in the complex plane are shown
on page 47 of Trefethen.

Overlooking the fact that we have passed to a continuum limit for the
potentials, we can give a precise estimate on the monic polynomial:

(2/e)N near x = 1;|pequi(z)| ' e(N+1)φequi(z) =

{
±

(1/e)N near x = 0.

whereas
|p (z)| ' e(N+1)φequi(z) = 2−NCheb , z ∈ [−1, 1].

We see that pequi can take on very different values well inside the interval
vs. near the edges. On the other hand the values of pCheb are near-constant in
[−1, 1]. The density ρCheb(x) is the only one that will give rise to this behav-
ior, so there is something special about it. It is the difference in asymptotic
behavior of (2/e)−N vs. 2−N that makes the whole difference for interpola-
tion, as N →∞.

One may argue that neither pequi nor pCheb blow up as N → ∞, but it
is an interesting exercise to show that if we were interpolating in an interval
[−a, a] instead of [−1, 1], then the bounds would be multiplied by aN , by
homogeneity.

The Chebyshev points are not the only one that correspond to the density
ρCheb(x) as N →∞. For instance, there is also the Chebyshev roots

π πj
θj
′ = + , j = 0, . . . , 2N 1,

2N N
−

which are the roots of TN(x), instead of being the extremal points. They
give rise to very good interpolation properties as well.

Finally, let us mention that the theory can be pushed further, and that
the exponential rate of convergence of Chebyshev interpolation for analytic
functions can be linked to the maximum value of φ(z) on the strip in which
the extension f(z) of f(x) is analytic. We will not pursue this further.
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7.2 Differentiation

7.2.1 Bandlimited differentiation

The idea that a numerical approximation of a derivative can be obtained from
differentiating an interpolant can be pushed further. In this section we return
to bandlimited interpolants. We’ve seen that they are extremely accurate
when the function is smooth and periodic; so is the resulting differentiation
scheme. It is called bandlimited differentiation, or spectral differentiation.

First consider the case of x ∈ R and xj = jh, j ∈ Z. As we’ve seen, the
bandlimited/spectral interpolant of u(xj) is

1
p(x) =

∫ π/h

eikxû(k) dk,
2π −π/h

where v̂(k) is the SFT of vj = u(xj). Differentiating p(x) reduces to a
multiplication by ik in the Fourier domain. Evaluating p′(xj) is then just a
matter of letting x = xj in the resulting formula. The sequence of steps for
bandlimited differentiation (x ∈ R) is the following:

• Obtain the SFT v̂(k) of vj = u(xj);

• Multiply v̂(k) by ik;

• Obtain the ISFT of ŵ(k) = ikv̂(k), call it wj.

The numbers wj obtained above are an approximation of u′(xj). The
following result makes this precise.

Theorem 17. (Accuracy of bandlimited differentiation, see also Theorem 4
in Trefethen’s book) Let u have p derivatives in L1(R). Let vj = u(xj), and
wj = p′(xj) be the result of bandlimited differentiation. Then

sup |wj − u′(xj)| = O(hp−2).
j

and
‖u′ − p′‖2 = O(hp−3/2).

Proof. The proof hinges on the fact that

|v̂(k)− û(k)| = O(hp).

12
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One power of h is lost when differentiating u (because ik is on the order of
1/h over the fundamental cell [−π/h, π/h]). Half a power of h is lost in going
back to the physical domain (j instead of k) via the L2 norm (why?), and a
full power of h is lost when going back to j in the uniform sense (why?).

The point of the above theorem is that the order of bandlimited differ-
entiation is directly linked to the smoothness of the function, and can be
arbitrarily large. This is called spectral accuracy. One can even push the
analysis further and show that, when f is real-analytic, then the rate of
convergence of wj towards u′(xj) is in fact exponential/geometric.

Of course in practice we never deal with a function u(x) defined on the
real line. In order to formulate an algorithm, and not simply a sequence of
abstract steps, we need to limit the interval over which u is considered. Spec-
tral differentiation in the periodic interval [0, 2π] works like before, except
DFT are substituted for SFT. For θ ∈ [0, 2π], we’ve seen that the spectral
interpolant is defined as

1
p(θ) =

2π

∑′′ N/2
eikθf̂k.

k=−N/2

(The double prime is important here.) Again, a derivative can be imple-
mented by multiplying by ik in the Fourier domain. The sequence of steps
is very similar to what it was before, except that we can now label them as
“compute”, and not just “obtain”:

• Compute the DFT v̂k of vj = u(xj);

• Multiply v̂k by ik;

• Compute the IDFT of ŵk = ikv̂k, call it wj.

The result of accuracy are the same as before, with the provision that u needs
to be not only smooth, but also smooth when extended by periodicity.

The FFT can be used to yield a fast O(N logN) algorithm for spectral
differentiation.

Note that higher derivatives are obtained in the obvious manner, by mul-
tiplying in Fourier by the adequate power of ik.
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7.2.2 Chebyshev differentiation

In view of what has been covered so far, the idea of Chebyshev differentiation
is natural: it is simply differentiation of the Chebyshev interpolant at the
Chebyshev nodes. It proves very useful for those smooth functions on an
interval, which do not necessarily extend smoothly by periodicity.

Let us recall that the Chebyshev interpolant is q(x) = p(arccosx), where
p(θ) is the bandlimited interpolant of u(cos θj) at the Chebyshev points
xj = cos θj. As such, a differentiation on q(x) is not the same thing as a
differentiation on p(θ). Instead, by the chain rule,

q′(x) =
−1√ p′(arccosx).

1− x2

The algorithm is as follows. Start from the knowledge of u(xj) at xj =
cos θj, θj = jh, h = π/N , and j = 1, . . . , N .

• Perform an even extension of u(xj) to obtain u(cos θj) for θj = jh,
h = π/N , and j = −N + 1, . . . , N . Now we have all the equispaced
sample of the periodic function u(cos θ) for θj covering [0, 2π], not just
[0, π].

• Take the DFT of those samples, call it v̂k,

• Multiply by ik,

• Take the IDFT of the result ikv̂√ k,

• Multiply by −1/ 1− x2
j to honor the chain rule. At the endpoints

xj = −1 or 1, take a special limit to obtain the proper values of p′(−1)
and p(1). See Trefethen’s book for the correct values.

This is a fast algorithm since we can use the FFT for the DFT and IDFT.
Since we are only a change of variables away from Fourier analysis in a pe-

riodic domain, the accuracy of Chebyshev differentiation is directly inherited
from that of bandlimited differentiation. We also have spectral accuracy.

Note that higher derivatives can be treated similarly, by applying the
chain rule repeatedly.

In practice, Chebyshev methods are particularly useful for boundary-
value problems (we’ll come back to this), when all samples of a function are
to be determined at once, and when we have the freedom of choosing the
sample points.
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7.3 Integration

7.3.1 Spectral integration

To go beyond methods of finite order, the idea of spectral integration is to
integrate a bandlimited interpolant. This strategy yields very high accuracy
when the function is smooth and periodic.

Consider a function u(θ), θ ∈ [0, 2π]. Its samples are vj = u(θj) with
θj = jh, h = 2π/N , and j = 1, . . . , N . Form the DFT:

N

v̂k = h
∑

e−ikθjvj,
j=1

and the bandlimited interpolant,

1 2

p(θ)
∑′′N/

= eikθv̂k.
2π k=−N/2

Integrating p(θ) gives the remarkably simple following result.

∫ 2π N

p(θ) dθ = v̂0 = h j
0

∑
u(θ ).

j=1

We are back to the trapezoidal rule! (The endpoints are identified, θ0 = θN .)
While we have already encountered this quadrature rule earlier, it is now
derived from Fourier analysis. So the plot thickens concerning its accuracy
properties.

2π
Specifically, we have to compare v̂0 to û0 =

∫
u(θ) dθ, where ûk are the

0

Fourier series coefficients of u(θ). The relationship between v̂0 and û0 is the
Poisson summation formula (7.2):

v̂0 =
∑ 2π

ûmN , N = .
h

m∈Z

The most important term in this sum is û0 for m = 0, and our task is again
to control the other ones, for m = 0. The resulting accuracy estimate is the
following.

6
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CHAPTER 7. SPECTRAL INTERPOLATION, DIFFERENTIATION, QUADRATURE

Theorem 18. Assume u has p derivatives in L1[0, 2π], where [0, 2π] is con-
sidered a periodic interval. (So it matters that the function connects smoothly
by periodicity.) Then∫ 2π N

u(θ) dθ
0

− h
∑

u(θj) = O(hp).
j=1

Proof. By the Poisson summation formula, in the notations of the preceding
few paragraphs,

û0 − v̂0 =
m

∑
ûmN .

=0

We have already seen that the smoothness properties of u are such that

|ûk| ≤ C|k|−p.

So we have
|û0 − v̂0| ≤ C

∑
(mN)−p N

=0

≤ C ′ −p,
m

which is a O(hp).

As a conclusion, the trapezoidal rule is spectrally accurate (error O(hp+1)
for all p ≥ 0 when u ∈ C∞), provided the function to be integrated in
smooth and periodic. If the function is C∞ in an interval but is for instance
discontinuous upon periodization, then we revert to the usual O(h2) rate. So
the true reason for the trapezoidal rule generally being O(h2) and not O(h∞)
is only the presence of the boundaries!

An important example of such periodic smooth function, is a regular
C∞function multiplied by a C∞ window that goes smoothly to zero at the
endpoints of [a, b], like for instance a member of a partition of unity. (This
plays an important role in some electromagnetism solvers, for computing the
radar cross-section of scatterers.)

7.3.2 Chebyshev integration

Like for Chebyshev differentiation, we can warp θ into x by the formula
θ = arccosx, and treat smooth functions that are not necessarily periodic.
Integrating a Chebyshev interpolant gives rise to Chebyshev integration, also
called Clenshaw-Curtis quadrature.

6

6
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7.3. INTEGRATION

Assume that f(x) is given for x ∈ [−1, 1], otherwise rescale the x variable.
The Chebyshev interpolant is built from the knowledge of f at the Chebyshev
nodes xj = cos θj, and takes the form

p(x) =
∑

anTn(x).
n≥0

We have seen that an are obtained by even extension of f(xj), followed by
an FFT where the sine terms are dropped. As a result,∫ 1 1

p(x) dx =
−1

∑
an

n≥0

∫
Tn(x) dx.

−1

We compute ∫ 1 π

Tn(x) dx =

∫
cos(nθ) sin θdθ.

−1 0

This integral can be evaluated easily by relating cos and sin to complex
exponentials (or see Trefethen’s book for an elegant shortcut via complex
functions), and the result is∫ 1 if

Tn( ) dx =
−1

{
0 n is odd;

x 2 if n is even.
1−n2

The algorithm for Chebyshev differentiation is simply: (1) find the coef-
ficients an for 0 ≤ n ≤ N , and (2) form the weighted sum∑ 2

an .
1

n even, n≤N
− n2

The accuracy estimate of Chebyshev integration is the same as that of
bandlimited integration, except we do not need periodicity. So the method
is spectrally accurate.

An important method related to Chebyshev quadrature is Gaussian quadra-
ture, which is similar but somewhat different. It is also spectrally accurate for
smooth functions. Instead of using extrema or zeros of Chebyshev polynomi-
als, it uses zeros of Legendre polynomials. It is usually derived directly from
properties of orthogonal polynomials and their zeros, rather than Fourier
analysis. This topic is fascinating but would take us a little too far.
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