18.366 Random Walks and Diffusion, Spring 2005, M. Z. Bazant.

Problem Set 4

Due at lecture on Th May 5.

- 1. Linear Polymer Structure. Consider a chain of N monomers, each of length a, in d = 3 dimensions. Let R_N be the end-to-end distance, with PDF, P(R, N). In the absence of correlations, we have the usual scaling, $\overline{R}_N = \sqrt{\langle R_N^2 \rangle} = a\sqrt{N}$. Now suppose that monomers also tend to be aligned linearly at each link, with an energy, $\varepsilon(\theta) = -\alpha \Delta x_n \cdot \Delta x_{n+1} = -\alpha a^2 \cos \theta$, for $1 \le n \le N-1$, which yields a PDF, $p(\theta) \propto e^{-\varepsilon(\theta)/kT}$, for each angle, θ .
 - (a) Normalize $p(\theta)$ and calculate the mean total energy, $\langle E_N \rangle = (N-1)\alpha a^2 \rho$, where $\rho(T) = \langle \Delta \vec{x}_n \cdot \Delta \vec{x}_{n+1} \rangle / a^2$, is the correlation coefficient between 'steps' (monomer vectors).
 - (b) Show that the same scaling holds,

$$\overline{R}_N \sim a_{eff}(T)\sqrt{N}$$

as $N \to \infty$, with an effective monomer size, $a_{eff}(T)$. Sketch $a_{eff}(T)$, and discuss its asymptotics for $T \to 0, \infty$.

- 2. Polymer Surface Adsorption. Consider a long polymer chain in solution attached ('adsorbed") onto a flat surface at a discrete set of points, $\vec{r_n} = (x_n, y_n, z = 0)$. Model the polymer as a continuous stochastic process in the half-space, (x, y, z > 0), with zero drift and "diffusivity", $D = a^2/2$, where a is the monomer length and "time" is measured in monomers. Take discreteness into account by starting the stochastic process at $\vec{r_n} + a\hat{z} = (x_n, y_n, a)$ before it returns for the next adsorption at $\vec{r_{n+1}}$.
 - (a) Calculate the PDF for the displacement between successive adsorption sites, proportional to the eventual hitting probability density on the surface. [Hint: use the electrostatic analogy with an "image charge".]
 - (b) Calculate the PDF of the position \vec{r}_{N_s} of the N_s th adsorption site (a Lévy flight).
 - (c) (Extra credit) For a polymer of length N, show that the expected number of adsorption sites $\langle N_s(N) \rangle$ scales like \sqrt{N} , which is also the scaling of the surface displacement, $\vec{r}_{N_s(N)}$, and the bulk radius of the polymer.
- 3. Solution to the Telegrapher's Equation. Let c(x,t) be the solution to¹

$$c_{tt} + rc_t = v^2 c_{xx}$$

for $-\infty < x < \infty$, t > 0 subject to the initial conditions, $c(x, 0) = \delta(x)$ and $c_t(x, 0) = 0$.

(a) Show that the Fourier²-Laplace³ transform of the solution is

$$\hat{\tilde{c}}(k,s) = \frac{s+r}{s(s+r)+v^2k^2}$$

$${}^{2}\hat{f}(k) = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$$
$${}^{3}\tilde{g}(s) = \int_{0}^{\infty} e^{-st} g(t) dt.$$

¹As explained in class, this continuum problem describes the long-time PDF of the position , $p_n(m) = \sigma c(m\sigma, n\tau)$, of a persistent random walk on a lattice of spacing σ with correlation coefficient, ρ , between successive steps of time interval τ , in the limit $\rho \to 1$ where $v = \sigma/\tau$, $r = 1/\tau_c$, $\tau_c = \tau n_c$, $n_c = -2/\log \rho$.

(b) Use part (a) to determine the variance of the position,

$$\langle x^2(t) \rangle = \int_{-\infty}^{\infty} x^2 c(x,t) dx$$

Show that this agrees with the scaling function for the persistent walk obtained in class (for the ballistic to diffusive transition in the limit $\rho \to 1$).

- (c) By comparing (a) with the Fourier-Laplace transform of the Diffusion Equation, $c_t = Dc_{xx}$, show that the Telegrapher's Equation reduces to the Diffusion Equation after long times, $t \gg \tau_c$ (or $s \ll r$), where $D = v^2/r$. (This essentially proves the Central Limit Theorem for the persistent random walk.)
- (d) (Extra credit) Invert the transforms in (a) to obtain the exact solution 4 ,

$$c(x,t) = \frac{e^{-rt/2}}{2} \left\{ \delta(x-vt) + \delta(x+vt) + \frac{r}{4v} \left[I_0(z) + \frac{I_1(z)}{2z} \right] H(vt-|x|) \right\}$$

where

$$z = \frac{r\sqrt{v^2t^2 - x^2}}{2v}$$

which smoothly interpolates between the Green functions for the Wave Equation, $c_{tt} = v^2 c_{xx}$, and the diffusion equation, $c_t = Dc_{xx}$, respectively⁵

4. Inelastic Diffusion. Consider a ball bouncing on a rough surface. Each time the ball hits the surface it is scattered in a random direction. For any real surface, the collision is *inelastic*, i.e. the ball only retains a fraction 0 < r < 1 of its kinetic energy (r = "the coefficient of restitution"). Therefore, the ball's expected height and horizontal displacement are reduced by factors of r and \sqrt{r} , respectively, with each successive bounce.

A reasonable model for this situation might be an 'inelastic random walk', with exponentially decreasing step lengths⁶. Let ΔX_n be IID random variables with zero mean and cumulants $c_l < \infty$ ($l \ge 2$), which represent the typical displacement after an elastic bounce. The inelastic nature of the collisions is reflected in a rescaling of this distribution with each step. Specifically, our model is the random walk

$$X_N = \sum_{n=1}^N a^n \Delta X_n$$

with non-identical steps, where 0 < a < 1 is a constant $(a = \sqrt{r})$. Do the analysis below for the case of one dimension (which would model transverse diffusion on a surface with random parallel grooves), but keep in mind that your results are easily generalized to higher dimensions.

- (a) Express the PDF, $P_N(x)$, of X_N in terms of the PDF, p(x), of ΔX_n .
- (b) Find the cumulants $C_{N,l}$ of X_N (in terms of c_l).
- (c) Let $C_l = \lim_{N \to \infty} C_{N,l}$ and $a = 1 \epsilon$ ($\epsilon > 0$). Show that $C_{2m}/C_2^m = O(\epsilon^{m-1})$ as $\epsilon \to 0$.
- (d) Let $\phi(\zeta, \epsilon) = C_2^{1/2} P_{\infty}(\zeta C_2^{1/2})$, and show that "the Central Limit Theorem holds" as $a \to 1$. In other words, show that

$$\phi(\zeta,\epsilon) \to \phi_o(\zeta) = e^{-\zeta^2/2}/\sqrt{2\pi}$$

as $\epsilon \to 0$ with ζ fixed⁷ This, of course, agrees with the limit of a simple random walk (a = 1).

⁴You may wish to use the following identities for modified Bessel functions: $I_0(z) = \int_0^{\pi} \cosh(z \cos \theta) d\theta$, $I_1(z) = I'_0(z)$. ⁵The former is obvious (delta function terms), and you may expand the solution in the limit $rt \gg 1$ and $x = O(\sqrt{t})$ to

obtain the latter (from the Bessel function terms), although it is also implied by (c).

 $^{^{6}}$ See Lecture 14, 18.366 notes (2003).

⁷Note, however, that the CLT does not apply for any fixed $\epsilon < 0$ as $N \to \infty$. For a dramatic example of the violation of the CLT, where ΔX_n is a Bernoulli random variable, see Lecture 15, 18.366 notes (2003).