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It is a remarkable fact [1] that Maxwell’s equations 
under any coordinate transformation can be written 
in an identical “Cartesian” form, if simple transfor­
mations are applied to the materials (ε and µ), the 
fields (E and H), and the sources (ρ and J). This 
result has numerous useful and/or beautiful conse­
quences, from designs of “invisibility cloaks” [2], 
to a simple derivation of PML absorbing boundaries 
[3], to enabling analyses of bent and twisted waveg­
uides in terms analogous to a quantum Stark effect 
[4] , to providing a simple way of applying numer­
ical methods designed for Cartesian coordinates to 
other coordinate systems [1]. 

Here, we review the proof in a compact form, gen­
eralized to arbitrary anisotropic media. (Most previ­
ous derivations seem to have been for isotropic me­
dia in at least one coordinate frame [1], or for coordi­
nate transformations with purely diagonal Jacobians 
J where Jii depends only on xi [3], or for constant 
affine coordinate transforms [5].) 

Summary of the Result 

Maxwell’s equations in Cartesian coordinates x are 
written (in natural units ε0 = µ0 = 1): 

∂E 
∇× H = ε + J (1) 

∂t 
∂H 

∇× E = −µ (2) 
∂t 

∇ · (εE) = ρ (3) 

∇ · (µH) = 0, (4) 

where J and ρ are the usual free current and charge 
densities, respectively, and ε(x) and µ(x) are the 
3 × 3 relative permittivity and permeability tensors, 
respectively. Now, suppose that we make some (dif­

′ferentiable) coordinate transformation x 7→ x (usu­
ally chosen to be non-singular, with some exceptions 
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[2]). Let J denote the 3 × 3 Jacobian matrix: 

∂x′ 

iJij = . 
∂xj 

We will show that Maxwell’s equations take on the 
same form (1–4) in the primed coordinate system, 
with ∇ replaced by ∇ ′ , if we make the transforma­
tions: 

E ′ = (J T )−1
E, (5) 

H ′ = (J T )−1
H, (6) 

T
J εJ 

ε 
′ = , (7) 

det J 

J µJ T 

µ 
′ = , (8) 

det J 

J J 
J ′ = , (9) 

det J 
ρ 

ρ ′ = , (10) 
det J 

where J T is the transpose. 
Note that, even if we start out with isotropic mate­

rials (scalar ε and µ), after a coordinate transforma­
tion we in general obtain anisotropic materials (ten­

′ sors ε and µ 
′ ). 

′For example, if x = sx for some scale factor 
′ ′ s 6 0, then ε = ε/s and µ = µ/s, which is pre­= 

cisely the material scaling required to keep e.g. the 
eigenfrequencies fixed under a rescaling of a struc­
ture. Note also that if s = −1, i.e. a coordinate in­

′version, then we set E ′ = −E, H ′ = −H, ε = −ε 

and µ 
′ = −µ, and the system switches “handed­

ness” (flipping the sign of the refractive index). [A 
more common alternative choice in that case would 
be to set H ′ = H, transforming H as a pseudovector 
[6], while keeping ε and µ unchanged. This corre­
sponds to sprinkling a few factors of sign(det J ) in 
the above equations, which we are free to do as long 
as the sign is constant.] 



Proof 

We will proceed in index notation, employing the 
Einstein convention whereby repeated indices are 
summed over. Eq. (1) is now expressed: 

∂Ed
∂aHbǫabc = εcd + Jc (11) 

∂t 

where ǫabc is the usual Levi-Civita permutation ten­
sor and ∂a = ∂/∂xa. Under a coordinate change 

∂x ′ 
ax 7→ x ′ , if we let Jab = 

∂xb 
be the (non-singular) 

Jacobian matrix associated with the coordinate trans­
form (which may be a function of x), we have 

∂a = Jba∂b
′ . (12) 

Furthermore, as in eqs. (5–6), let 

Ea = JbaEb
′ , (13) 

Ha = JbaHb
′ . (14) 

Hence, eq. (11) becomes 

′∂E
Jia∂i

′ JjbHj 
′ ǫabc = εcdJld 

l + Jc. (15) 
∂t 

′Here, the Jia∂i = ∂a derivative falls on both the Jjb 
′and Hj terms, but we can eliminate the former thanks 

to the ǫabc: ∂aJjbǫabc = 0 because ∂aJjb = ∂bJja. 
Then, again multiplying both sides by the Jacobian 
Jkc, we obtain 

′∂E
JkcJjbJia∂i

′ Hj 
′ ǫabc = JkcεcdJld 

l + JkcJc
∂t 

(16) 
Noting that JiaJjbJkcǫabc = ǫijk det J by defini­
tion of the determinant, we finally have 

′ 

∂i
′ Hj 

′ ǫijk =
1 

JkcεcdJld 
∂El + 

JkcJc (17) 
det J ∂t det J 

or, back in vector notation, 

J εJ T ∂E ′ 
∇ ′ × H ′ = + J ′ , (18) 

det J ∂t 

where J ′ = J J/ det J according to (9). Thus, we 
see that we can interpret Ampere’s Law in arbitrary 
coordinates as the usual equation in Euclidean coor­
dinates, as long as we replace the materials etc. by 
eqs. (5–7). By an identical argument, we obtain 

∇ ′ × E ′ = − 
J µJ T ∂H ′ 

, (19) 
det J ∂t 
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which yields the transformation (8) for µ. 
The transformation of the remaining divergence 

equations into equivalent forms in the new coordi­
nates is also straightforward. Gauss’ Law, eq. (3), 
becomes 

′ ′ ρ = ∂aεabEb = Jia∂iεabJjbEj 

′ −1ε ′ ′ = Jia∂i(det J )Jak kj Ej 

= (det J )∂ ′ ε ′ E ′ + (∂aJ
−1 

i ij j ak 

= (det J )∂i
′ εij 

′ Ej 
′ , 

which gives ∇ ′ · (ε 
′ 
E ′ ) = ρ′ for ρ′ 

det J )ε ′ E ′ kj	 j 

(20) 

= ρ/ det J , cor­
responding to eq. (10). Similarly for eq. (4). Here, 
we have used the fact that 

−1∂aJak det J = ∂aǫanmǫkij JinJjm/2 = 0, (21) 

from the cofactor formula for the matrix inverse, and 
recalling that ∂aJjbǫabc = 0 from above. In partic­
ular, note that ρ = 0 ⇐⇒ ρ′ = 0 and J = 0 ⇐⇒ 

J ′ = 0, so a non-singular coordinate transformation 
preserves the absence (or presence) of sources. 
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