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Itis aremarkable fact [1] that Maxwell’s equations
under any coordinate transformation can be written
in an identical “Cartesian” form, if simple transfor-
mations are applied to the materials (¢ and ), the
fields (E and H), and the sources (p and J). This
result has numerous useful and/or beautiful conse-
quences, from designs of “invisibility cloaks” [2],
to a simple derivation of PML absorbing boundaries
[3], to enabling analyses of bent and twisted waveg-
uides in terms analogous to a quantum Stark effect
[4] , to providing a simple way of applying numer-
ical methods designed for Cartesian coordinates to
other coordinate systems [1].

Here, we review the proof in a compact form, gen-
eralized to arbitrary anisotropic media. (Most previ-
ous derivations seem to have been for isotropic me-
diain at least one coordinate frame [1], or for coordi-
nate transformations with purely diagonal Jacobians
J where J;; depends only on z; [3], or for constant
affine coordinate transforms [5].)

Summary of the Result

Maxwell’s equations in Cartesian coordinates x are
written (in natural units g = o = 1):
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where J and p are the usual free current and charge
densities, respectively, and e(x) and p(x) are the
3 x 3 relative permittivity and permeability tensors,
respectively. Now, suppose that we make some (dif-
ferentiable) coordinate transformation x — x’ (usu-
ally chosen to be non-singular, with some exceptions

[2]). Let J denote the 3 x 3 Jacobian matrix:

Z'j - 8$j.

We will show that Maxwell’s equations take on the
same form (1-4) in the primed coordinate system,
with V replaced by V', if we make the transforma-
tions:
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where 77 is the transpose.

Note that, even if we start out with isotropic mate-
rials (scalar € and ), after a coordinate transforma-
tion we in general obtain anisotropic materials (ten-
sors €’ and p/).

For example, if x’ = sx for some scale factor
s #0,thene’ = g/sand p’ = p/s, which is pre-
cisely the material scaling required to keep e.g. the
eigenfrequencies fixed under a rescaling of a struc-

ture. Note also that if s = —1, i.e. a coordinate in-
version, thenwe set E' = -E, H' = —H, &' = —¢
and p/ = —pu, and the system switches “handed-

ness” (flipping the sign of the refractive index). [A
more common alternative choice in that case would
be to set H' = H, transforming H as a pseudovector
[6], while keeping € and p unchanged. This corre-
sponds to sprinkling a few factors of sign(det J) in
the above equations, which we are free to do as long
as the sign is constant.]
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We will proceed in index notation, employing the
Einstein convention whereby repeated indices are
summed over. Eg. (1) is now expressed:
0E,
8 Hbeabc =E&cd—pm; ot
where €. is the usual Levi-Civita permutation ten-
sor and 9, = 0/0x,. Under a coordinate change
x — x', if we let J,, = b
Jacobian matrix associated with the coordmate trans-
form (which may be a function of x), we have

+J. (11)

0o = Tpa0p. (12)
Furthermore, as in egs. (5-6), let
E. = JwE, (13)
H, = JwuH,. (14)
Hence, eq. (11) becomes
Jia0; Tjp Hjeape = Ecdjldaa—bzll + Je. (15)

Here, the J;,0; = 0, derivative falls on both the 7,
and H; terms, but we can eliminate the former thanks
to the €qpe: OaTjp€abe = 0 because 0, Tjp = OpTja.
Then, again multiplying both sides by the Jacobian
Jre, We obtain
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Noting that J;q Jjs Tkc€abe = €iji det T by defini-
tion of the determinant, we finally have
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or, back in vector notation,
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where J' = JJ/det J according to (9). Thus, we
see that we can interpret Ampere’s Law in arbitrary
coordinates as the usual equation in Euclidean coor-
dinates, as long as we replace the materials etc. by
egs. (5-7). By an identical argument, we obtain
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which yields the transformation (8) for .

The transformation of the remaining divergence
equations into equivalent forms in the new coordi-
nates is also straightforward. Gauss’ Law, eq. (3),
becomes

P = Ougar By = L7iaaz{5abc7jbE_;‘
= Jia0i(det T) T ey B
= (det J)0je, B + (00T ;" det T )ey, B
= (det J)0;e}; E, (20)

which gives V' - (¢'E’) = p for p’ = p/ det J, cor-
responding to eq. (10). Similarly for eq. (4). Here,
we have used the fact that

aajg?gl det J = aaeanmekij%nn]jm/Q =0, (21)

from the cofactor formula for the matrix inverse, and
recalling that 0,7, €45 = 0 from above. In partic-
ular, notethat p = 0 <= p' = 0and J = 0 <
J’ = 0, so a non-singular coordinate transformation
preserves the absence (or presence) of sources.
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