
Advanced Complexity Theory

Prof. Dana Moshkovitz

18.405J/6.841J: Spring 2016

Lecture 1: PH Time-Space Tradeoffs
Scribe: Anonymous Student

Scribe Date: Fall 2012

1 Overview

The main result of this lecture is that NTIME(n) has algorithms which do not run in time n1.2

and use n0.2 space. We begin by reviewing some major open problems in complexity theory and
describing how this result fits into those open problems. We define the classes in basic complexity
theory and the Polynomial Hierarchy. Then we prove the main theorem by using 2 claims. The
method we use is an example of a general method for proving similar results, some of which are
mentioned at the end of the lecture.

2 Open Problems in Complexity Thoery

The famous question of complexity is whether P = NP . Of course, it is known that P ⊆ NP , so
really the question is whether NP ⊆ P . It is conjectured that NP 6⊆ P , but nobody knows how to
prove this.

To introduce some notation, NP is the same as the class NTIME(nO(1)), the set of languages
which are decided by a non-deterministic algorithm which runs in polynomial time. P is the same
as DTIME(nO(1)), the set of languages decided by a deterministic polynomial-time algorithm.

An slightly easier question is whether NTIME(n) 6⊆ DTIME(n1.1). The difference is that while
the P vs. NP question asks about all polynomial-time algorithms, this question specifies which
polynomials we are interested in. It is clear that we need to give the deterministic algorithm
more time that the nondeterministic one, so for example DTIME(n0.5) is certainly weaker than
NTIME(n).

What we’re doing, then, is taking away the non-determinism, and asking how much more time is
required by a deterministic algorithm. The NP 6⊆ P conjecture implies that in general, we need
exponential time when we take away the non-determinism. The conjecture that NTIME(n) 6⊆
DTIME(n1.1) says that even when we specify which polynomials we’re interested in, we can’t
get a polynomial tradeoff. But we can’t even prove this– we don’t know how to prove there’s no
containment here.

The results along these lines are much weaker: instead of getting a time increase of n1.1, we can
get things like 5n or 7n.

However, if we limit the algorithms to small space, we can prove a result along these lines:
NTIME(n) contains algorithms which do not run in both n1.2 time and n0.2 space.

1

3 Definitions

Here we’ll define the complexity classes that will be used in the proof.

3.1 Basic Complexity Theory

As a quick review, the complexity classes P , NP , and coNP are defined as follows:

• P is the set of all languages L such that there exists a polynomial-time algorithm A with

x ∈ L⇔ A(x) = 1 .

• NP is the set of all languages L such that there exists a polynomial-time algorithm A with

x ∈ L⇔ ∃y st. A(x, y) = 1 .

• coNP is the set of all languages L such that there exists a polynomial-time algorithm A with

x ∈ L⇔ ∀y,A(x, y) = 0 .

It is known that P ⊆ NP and P ⊆ coNP , and it is conjectured that NP 6= coNP .

3.2 Polynomial Hierarchy

We can see that NP and coNP simply add a quantifier (∃ or ∀) to obtain more strength. We can
iterate this process to create more complexity classes with successively more strength.

• Σi is the set of languages L for which there’s a polynomial time algorithm A with

x ∈ L⇔ ∃y1∀y2∃y3 · · · yi st. A(x, y1, y2, . . . yi) = 1 .

Thus Σ1 = NP .

• Πi is the set of languages L for which there’s a polynomial time algorithm A with

x ∈ L⇔ ∀y1∃y2∀y3 · · · yi st. A(x, y1, y2, . . . yi) = 0 .

Thus Π1 = coNP .

We do not need to consider classes which have quantifiers in any other order. For example, if we’re
examining the class for which the quantifiers are arranged ∃y1∃y2∀y3∀y4∀y5∃y6, we can simply
define ya = (y1, y2), yb = (y3, y4, y5) and this is equivalent to the quantifiers being in the order
∃ya∀yb∃y6, and thus this is the class Σ3.

The general conjecture about these classes is The polynomial hierarchy doesn’t collapse.
That is, each new quantifier gives you new power that you didn’t have without it. The class PH
is the union of all Σis, or alternately of all Πis:

∞ ∞

PH = Σi = Πi.
i

⋃
=1 i

⋃
=1

We know that PH ⊆ PSPACE.

2

4 Proof of Main Theorem

We will restate the main theorem of the lecture here for convenience. The notation TISP (f(n), g(n))
means the class of problems solvable by algorithms running in time f(n) and space g(n). It is impor-
tant to note that, TISP (f(n), g(n)) is not necessarily the same as DTIME(f(n))∩SPACE(g(n))
– the latter is the class of problems solvable by either an algorithm running in time f(n) or in
space g(n), not necessarily both. However, the following inclusion holds: TISP (f(n), g(n)) ⊆
DTIME(f(n)) ∩ SPACE(g(n)).

Theorem 1. NTIME(n) contains algorithms not in TISP (n1.2, n0.2).

Proof. The proof is by contradiction. We will assume that

NTIME(n) ⊆ TISP (n1.2, n0.2).

In the proof, we scale up all of the exponents by a factor of 10, so we’re dealing with n12 and n2.
We do this by substituting n10, a padding argument which is left as an exercise. So our assumption
is NTIME(n10) ⊆ TISP (n12, n2).

The proof is built off of the following two claims.

Claim 2. If NTIME(n) ⊆ DTIME(n1.2), then Σ2 − TIME(n8) ⊆ NTIME(n9.6).

The notation Σ 8
2−TIME(n) simply means that the algorithm A in the definition of Σ2 must run

in time n8. The precondition of this claim is true by our assumption. Basically, we’re saying that
if our assumption is true, giving away your nondeterminism means you only need to pay a factor of
1.2 in the exponent. So if we add extra quantifiers, turning the NTIME into a Σ2 − TIME and
the DTIME into an NTIME, this property persists: the tradeoff for fewer quantifiers is a factor
of 1.2 in the exponent of the time. The proof of this is left as an exercise.

Claim 3. TISP (n12, n2) ⊆ Σ2 − TIME(n8)

The idea is that adding more quantifiers, a process called alternation, adds a lot of power. This
claim will be proved in Section 5.

With these two claims, we are ready to prove our theorem. We know

NTIME(n10) ⊆ TISP (n12, n2) by assumption

TISP (n12, n2) ⊆ Σ2 − TIME(n8) by Claim 3

Σ2 − TIME(n8) ⊆ NTIME(n9.6) by Claim 2

Thus stringing the containments along, we have

NTIME(n10) ⊆ NTIME(n9.6),

which is a contradiction of the nondeterministic time-heirarchy theorem: when we have more time,
we necessarily have more power.

Thus we’ve reached a contradiction and the theorem is proved.

3

5 Proof of Claim 3

It remains to prove the second claim, which we’ll do here.

Proof. Let L ∈ TISP (n12, n2). Thus, there is some TM M which decides L and runs in time n12

and space n2.

Consider the configuration graph GM,x. Each node in this graph is a configuration, i.e. all the data
needed to store the current state of the turing machine. This means we must store what is on the
tape, where the head is on the tape, and which internal state we are in. Since M runs in space n2,
we only need O(n2) space to represent each configuration.

The configuration graph has edges from each configuration to the configuration it visits next. But
since this is a deterministic TM, and the configuration graph specifies which x we are working with,
the graph is just a path, starting with C0, the initial cofiguration, and taking a step to the next
configuration and the next. Since M runs in time n12, the length of the path is O(n12).

Now, partition this length O(n12) path into n6 subpaths, each of length O(n6). Since we are
constructing a Σ2 algorithm, and Σ2 algorithms can guess, we’ll simply guess on each of these
subpaths. More formally:

x ∈ L⇔ ∃c∗1, . . . , c∗n6∀i ∈ [n6] st. the following conditions are satisfied:

• c∗i is reached from c∗i 1 in O(n6) steps−

• c∗n6 is accepting

Essentially, we ensure that each configuration can reach the next one in a small enough amount of
steps, but we can guess the steps using our non-determinism to find a shortcut. So long as we end
in a configuration which is accepting, we know x ∈ L.

In this algorithm, we have n6 guesses for the n6 different c∗i s. Each of those configurations is of size
n2. Thus this algorithm runs in time O(n8). Since it is a Σ2 algorithm because of the ordering of
the quantifiers, we know that L ∈ Σ2 − TIME(n8). Since L was an arbitrary language, this proof
holds for all languages L ∈ TISP (n12, n2) and thus TISP (n12, n2) ⊆ Σ2 − TIME(n8) as desired.

6 General Technique

There were several choices we made in the proof above, such as which particular exponents to
use, which could be massaged to possibly produce a better result than this. In fact, the general
technique can be described as:

• Claim 1: by the assumption, a certain resource buys me a certain amount of time and/or
space

• Claim 2: the resource can’t buy you that amout by heirarchy theorems.

4

6.1 Applications of General Technique

Williams (see [1], [2], or[3]) wrote a computer program to find the best result we can get from the
above methods, rather than going through it by hand. He proved the non-inclusion above in the
case of no(1) space and n2 cosπ/7−o(1) ≥ n1.8. So while we got n1.2 in class, results are known for
about n1.8.

Hopcroft, Paul, and Valiant[5] proved in 1977 that SPACE(n) 6⊆ DTIME(o(n lg n)).

Paul, Pippenger, Szemeredi, and Trotter[4] proved in 1983 that NTIME(n) 6= DTIME(n).

References

[1] R. Ryan Williams, Time-Space Tradeoffs for Counting NP Solutions Modulo Integers IEEE
2007: 70-82.

[2] R. Ryan Williams, Automated proofs of time lower bounds 2007.

[3] Ryan Williams, Alternation-Trading Proofs, Linear Programming, and Lower Bounds STACS
2010: 669-680.

[4] Wolfgang J. Paul, Nicholas Pippenger, Endre Szemerédi, William T. Trotter, On Determinism
versus Non-Determinism and Related Problems FOCS 1983: 429-438.

[5] John E. Hopcroft, Wolfgang J. Paul, Leslie G. Valiant, On Time Versus Space. J. ACM 24(2):
332-337 (1977).

5

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

