
Advanced Complexity Theory

Prof. Dana Moshkovitz

1 Overview

In the last lecture we covered Valiant–Vazirani reduction and investigated the complexity of ap-
proximate counting.

In this lecture we prove Toda’s Theorem: PH ⊆ P#P.

2 Toda’s Theorem Statement

One can easily see from the definition of #P that NP, coNP ⊆ P#P. The question that is naturally
to ask is: can we reduce a larger complexity class to #P? In [Tod91] Seinosuke Toda proved the
following theorem.

Theorem 1. It is true that PH ⊆ P#P. Moreover, the reduction queries an oracle from #P (say,
#SAT) only once.

3 Randomized Reduction

Let us recall the definition of ⊕SAT.

Definition 2. For every Boolean formula ϕ on n variables we say that x 0,1 n ϕ(x) is true iff∈{ }
ϕ(x) has an odd number of satisfying assignments. To put it another way,

⊕
⊕

ϕ(x) ≡ ϕ(x) (mod 2).

x∈{0,1}n x∈{

∑
0,1}n

The language ⊕SAT consists of all the true formulae of the form x 0,1 n ϕ(x).∈{ }

In this section we show how to reduce PH to ⊕SAT via a rand

⊕
omized reduction. In the next

section we present an ingenious idea of Toda that allows us to derandomize the reduction at a cost
of switching from ⊕SAT to #SAT.

So, our goal in this section is the following theorem.

Theorem 3. For every c ∈ N there exists a randomized algorithm that takes a quantified Boolean
formula ϕ(x) with n variables (x stands for the set of free variables), and a parameter m and
outputs a formula

⊕
y ψ(x, y) such that for every x

Pr[ϕ(x) =
⊕

ψ(x, y)]
y

≥ 1− 2−m.

The running time of the reduction is (nm)Oc(1).

1

18.405J/6.841J: Spring 2016

Lecture 5: Toda's Theorem
Scribe: Ilya Razenshteyn
Scribe Date: Fall 2012

To prove this theorem we first need to establish some properties of
⊕

-formulae.

3.1 Properties of Parity-Quantified Formulae

Let ϕ,ψ : {0, 1}n → {0, 1} be any Boolean functions. Let us denote #(ϕ) the number of satisfying
assignments of ϕ. Then, one can easily build formulae ϕ + ψ and ϕ · ψ with O(n) variables such
that

• #(ϕ+ ψ) = #(ϕ) + #(ψ);

• #(ϕ · ψ) = #(ϕ) ·#(ψ).

Using this “arithmetic operations” one can easily show that if x ϕ(x) and y ψ(y) are parity-
quantified formulae with disjoint sets of variables, then their conju

⊕
nction, disjunction

⊕
and negation

can be represented as parity-quantified formulae with only a constant blowup in size. This implies,
for example, that ⊕P is closed under the complement.

3.2 Proof of Theorem 3

W.l.o.g. we can assume that ϕ(x) = ∃x1 ψ(x1, x), where ψ is a quantified formula with c− 1 levels
of alternation (note that x1 is a set of variables, not a single variable), since ⊕SAT is closed under
taking negations.

Now we invoke the induction hypothesis and get a formula y τ(x1, x, y) such that for every x1, x
we have

Pr[
⊕

τ(x1, x, y) = ψ(x1, x)] ≥ 1

⊕
y

− 2−(m+n+10).

Now by union bound we have that with probability at least 1− 2−(m+10) we have y τ(x1, x, y) =
ψ(x1, x) for every x, x1. In this case we have ϕ(x) = ∃x1 y τ(x1, x, y), and it is only left to
remove the outer quantifier. For this we use Valiant–Vazirani

⊕⊕
reduction. Let us first recall it in

somewhat “abstract” setting.

Theorem 4. There is a polynomial-time randomized algorithm that given 1n produces a Boolean
formula α(x, y), where x is a vector of n variables, such that for any function β : {0, 1}n → {0, 1}
we have

• If ∃x β(x), then ⊕ 1
Pr[(α(x, y)

x,y

∧ β(x))] ≥ ;
8n

• If ¬∃x β(x), then

Pr[
⊕

(α(x, y)
x,y

∧ β(x))] = 0;

2

We invoke this Theorem N times (we will determine the exact value of N later) and get N formulae
α1(x1, z), α2(x1, z), . . . , αN (x1, z). We build the final formula as follows:

∨N ⊕
(αi(x1, z)

i=1 x1,z

∧
⊕

τ(x1, x, y)). (1)
y

Let us condition of the event that
⊕

y τ(x1, x, y) = ψ(x1, x) for every x1, x. Then we see that with

probability at least (1−1/8n)N (1) is equal to ϕ(x). So, if we choose N = O(nm) we can make this
probability at least 1− 2−(m+10). Thus, the total probability of failure is at most 2−(m+9) � 2−m.

It is left to observe that we can (and should!) transform (1) to a ⊕SAT instance using tricks from
Section 3.1.

4 Derandomization

In this section we show how to derandomize Theorem 3 at a cost of switching from ⊕SAT to #SAT.

We can think about the reduction from the proof of Theorem 3 as a deterministic one that takes a
string of random coins of size R. So, we have a polynomial-time deterministic reduction f(ϕ(x), r)
such that

• If ϕ(x), then for at least 0.99 fraction of r’s f(ϕ(x), r) ∈ ⊕SAT;

• If ¬ϕ(x), then for at least 0.99 fraction of r’s f(ϕ(x), r) ∈/ ⊕SAT.

We want to use a counting oracle to distinguish these two cases. For this we need the following
gap-amplification Lemma.

Lemma 5. There exists a polynomial-time deterministic reduction that given 1l and a ⊕SAT-
formula ψ produces a Boolean formula γ such that

• If ψ ∈ ⊕SAT, then #(γ) ≡ −1 (mod 2l);

• If ψ ∈/ ⊕SAT, then #(γ) ≡ 0 (mod 2l).

Let us first show how to finish the proof of Toda’s theorem assuming the Lemma. If we denote the
reduction in the Lemma by T , then we can consider the following formula:∑

T (f(ϕ, r)).
r

If we choose l > R + 10, then for ϕ ∈ ⊕SAT and ϕ ∈/ SAT the ranges of possible values of this
formula are disjoint. So, we can compute this sum using an oracle from #P (since T and f are
polynomial-time deterministic reductions), and, thus, decide ϕ.

So, it is left to prove the Lemma. For l = 1 there is nothing to prove: we can take the reduction to
be the identity. By the inductive hypothesis suppose that #(γ′) ≡ 0 or −1 (mod 2t). We will show

3

how to switch from 2t to 22t. Namely, consider the formula γ = 4γ′3 + 3γ′4 (here by arithmetic
operations we mean the tricks from Section 3.1). It turns out that it gives exactly what we need!
If #(γ′) ≡ 0 (mod 2t), then #(γ) ≡ 0 (mod 22t), but if #(γ′) ≡ −1 (mod 2t), then #(γ)

t
≡ 1

(mod 22
−

). We repeat this process O(log l) times, and get the desired formula. It is left to observe
that on each step the blow up in size is at most constant, so in total we have polynomial running
time.

References

[Tod91] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM J. Comput.,
20(5):865–877, 1991.

4

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

