
Fourier analysis and inapproximability for MAX-CUT: a case

study

Jake Wellens

May 6, 2016

Abstract

Many statements in the study of computational complexity can be cast as statements
about Boolean functions f : {−1, 1}n → {−1, 1}. However, it was only very late in the
last century that the analytic properties of such functions, often expressed via the Fourier
transform on the Boolean hypercube, became the key ingredient in proofs of hardness
of approximation. In this short survey, we give a brief overview of the history of this
relationship between harmonic analysis and inapproximability for CSPs by zooming in
on the particularly illustrative example of MAX-CUT. We summarize Hastad’s seminal
ideas from [4], proving unconditional NP-hardness of (16 + ε)-approximating MAX-CUT.17
Then we take a detailed look at how Khot, Kindler, Mossel and O’Donnell [7] pushed
these Fourier-analytic methods further to prove UGC-hardness of approximating MAX-
CUT to within any constant factor larger than αGW ≈ 0.878, the factor achieved by the
famous Goemans-Williamson approximation algorithm. In particular, we’ll discuss the
Majority is Stablest Theorem and the role it plays in their analysis, with the hope of
making this connection between a purely analytic invariance principle and the surprising
UGC-optimality of Goemans and Williamson’s algorithm – as well as the need for analytic
methods in proving computational hardness – appear a little less mysterious than it might
at first sight.

1 Introduction: A brief history of MAX-CUT

MAX-CUT is a simple and classical problem in combinatorial optimization: given an undi-
rected graph G = (V,E) with edge weights wij ≥ 0, the MAX-CUT problem1 is to find a
subset of vertices C ⊆ V (called a cut) such that the combined weights of all the edges crossing
the cut (i.e. with exactly one endpoint in C) is as large as possible. That is, MAX-CUT asks
to maximize

val(C) :=

(i,j)

∑
wij (1)

∈E∩C×(V \C)

Given as one of Karp’s original NP-complete problems in 1972, there has since been much
interest in finding efficient algorithms for obtaining optimal and nearly-optimal solutions to

1Technically, finding an (approximately) optimal cut may be harder than finding the value of an (approxi-
mately) optimal cut. However, in all cases considered here, both problems are either easy or NP-hard, so we
often ignore the distinction.

1

it2. Using a simple greedy algorithm, it’s easy to find a cut in any graph with val(C)
1

≥
wij . The first – and only – substantial improvement over this trivial approximation2

w

∑
(i,j)∈E

as made by Goemans and Williamson in 1994, whose randomized algorithm, described in
section 3, obtains in expectation the suspiciously irrational approximation factor

2
αGW := min

ρ∈(−1,0) π

arccos ρ

1− ρ
= min

θ∈(0,π)

2

π

θ

1
≈ 0.878 (2)

− cos θ

The MAX-CUT problem is a special case of MAX-E2-Lin, which is the problem of finding
an assignment to Boolean variables xi which satisfies as many linear constraints as possible,
where each constraint has the form

xi + xj = b mod 2; where b ∈ {0, 1} (3)

(For MAX-CUT, of course, there is a constraint xi + xj = 1 mod 2 for each edge (i, j).) This
is a typical example of a constraint satisfiability problem (or CSP), a class containing many
other important hard problems like SAT and Vertex Cover. Finding optimal assignments for
these and other CSPs has long been known to be NP-hard, but as the celebrated PCP theorem
of Arora et al. [1] shows, there is a theoretical barrier to obtaining even approximate optimal
solutions.

PCP Theorem: [Arora et al. 1998] There is a universal constant c < 1 such that for any
language L ∈ NP and any string x ∈ {0, 1}n, we can construct in poly(n)-time a 3-CNF
formula φ = φx,L such that if x ∈ L, then φ is satisfiable; while if x 6∈ L, at most a fraction
c of φ’s clauses are simultaneously satisfiable.3 Furthermore, we can pick φ such that each
clause contains exactly 3 distinct variables and each variable appears in φ exactly 5 times.

After various versions of the PCP theorem established NP-hardness of approximating a va-
riety of CSPs, it became a matter of great practical importance and intellectual interest to
pinpoint these thresholds exactly. Proving lower bounds on such thresholds requires finding
efficient algorithms (like Goemans-Williamson), while proving upper bounds (i.e. hardness
of approximation theorems) usually requires constructing a particular type of PCP verifier
whose tests and queries are suited to the CSP in question. Moreover, upper bounds for one
CSP can often be turned into upper bounds for different CSPs via reduction gadgets, and
this process was streamlined in [12]. We begin in Section 2 by taking a look at Hastad’s
Fourier-analytic approach [4] to proving hardness of approximation for CSPs, which in many
cases, obtains either best-known or theoretically optimal hardness factors. In particular, he
shows that (16 + ε)-approximating MAX-CUT is NP-hard, which, 15 years later, remains the17
best unconditional result in this direction. In Section 3, following the work of Khot, Kindler,
Mossel and O’Donnell [7], we’ll use similar techniques to improve this hardness factor as much
as possible – right up to the αGW threshold – assuming the (somewhat controversial) Unique
Games Conjecture.

2In [2], it was shown that for MAX-CUT (as well as a number of other combinatorial constraint optimization
problems), the optimal approximation factor for the weighted and unweighted (i.e. wij = 1) versions of the
problem are the same up to some additive o(1) term. Hence, for our purposes, we may use either one at any
time.

3Henceforth we shall call this maximal fraction val(φ), and use the same notation for the analogous fractions
in other CSPs.

2

2 Hastad’s NP-Hardness for (16 +ε)-approximating MAX-CUT17

Unlike the approach of Khot et al. [7], Hastad first shows hardness of MAX-E3-Lin and then
uses a gadget of Trevisan et al. [12] to reduce from MAX-E3-Lin to MAX-CUT. Specifically,
Hastad constructs a PCP for an NP-hard language with completeness 1 − ε and soundness
1 + ε for any ε > 0, making only 3 queries to the proof and a test of the form xi +xj +xk =? b2
mod 2.

2.1 Two-Prover One-Round Games and the Label Cover problem

Hastad’s proof of soundness is based on a simple protocol known as a two-prover one-round
game. We will describe the relevant protocol below in a style similar to Hastad’s original
presentation, but we will quickly shift our model to that of label cover problems. These two
frameworks are equivalent, but the latter is now more common in the literature and, for our
purposes, more amenable to analogy with the PCP of Khot et al. that we will encounter in
section 2.

Basic two-prover protocol:

Input: A 3-CNF formula φ = C1 ∧ · · · ∧ Cm, where Cj = (xj1 ∨ xj2 ∨ xj3).

Protocol: 1) Pick j ∈ [m] and k ∈ {j1, j2, j3} uniformly at random and send j to P1 and k to
P2.

2) Receive values for xj1 , xj2 , xj3 from P1 and xk from P2. Accept iff the two values for xk
agree and Cj is satisfied.

Claim: If val(φ) = c, then the above protocol accepts φ with probability at most (2 + c)/3.

Proof: The answers that P2 gives define an assignment y to all the variables. If a clause
C is unsatisfied by y, then in order for P1’s responses to satisfy C, it must disagree with P2

on at least 1 of the 3 variables in that clause. Thus the test rejects with probability at least
(1− c)/3.

Since the value of c < 1 from the PCP theorem (which will translate to soundness (2 + c)/3
in the above protocol) may be very close to 1, we’ll want to amplify this gap4 via parallel
repetition:

r-parallel two-prover protocol:

Input: A 3-CNF formula φ = C1 ∧ · · · ∧ Cm, where Cj = (xj1 ∨ xj2 ∨ xj3).

Protocol: 1) For l = 1, . . . , r, pick jl ∈ [m] and kl ∈ {jl1, jl2, jl3} uniformly and independently
and send all jl to P1 and all kl to P2.

2) Receive values for x l
jl , xjl , xjl from P1 and xk from P2. Accept iff the two values for xkl
1 2 3

agree and Cj is satisfied for every l = 1, . . . , r.

Thus, it follows from

4Of course, if φ ∈ SAT, then honest provers can get the test to accept with probability 1.

3

Parallel Repetition Theorem: [Raz 1998] For any d = O(1) and s < 1, there is a constant
τ = τ(d, s) < 1 such that given a two-prover one-round proof system with soundness s and
answer size5 at most d, the soundness of the r-parallel version of the protocol is at most τ r.

that for ε > 0 and r = r(ε) sufficiently large6, the above protocol accepts a formula φ coming
from the PCP theorem with probability 1 if val(φ) = 1 and probability at most ε if val(φ) ≤ c.

We now move to the equivalent setting of Label-cover:

Definition: The Label-Cover problem with alphabet Σ is defined by the tuple (G,V1, V2, E, {πe},Σ),
where

• G = (V1, V2, E) is bipartite and each vertex in V1 has the same degree

• The constraints πe for each edge e = (u, v) ∈ E are functions πe : Σ → Σ ∪ {#} which
are satisfied iff the labels au, av ∈ Σ given to u and v satisfy πe(au) = av.

Thinking of V1 as the set of questions for the first prover P1, and V2 as the set of questions for
P2, and the functions πe as encoding the predicate the verifier uses to accept/reject based on
the provers’ responses, one can easily convince oneself that these two models capture the same
protocol: an assignment of “labels” to vertices in the latter is simply a choice of “answers”
to questions in the former, and the fraction of edge constraints which are satisfied by an
assignment equals the probability the verifier accepts when the provers use the corresponding
strategy.7 For concreteness, Hastad’s basic protocol from the previous page translates to the
Label-Cover instance with V1 equal to the set of clauses Ci in φ, and V2 is equal to the set of
variables xj in φ. The alphabet Σ will be {0, 1}3 ∪ {0, 1}, and the edge constraint π(u,v) will
send the subset of {0, 1}3 that satisfies a clause Cu to the assignment of the xv variable, and
send everything else to #.

Let GAP-LC1,ε(Σ) be the problem of distinguishing Label-Cover instances which are 1-satisfiable
from those which are at most ε-satisfiable. By translating our amplified (parallelized) protocol
into a Label Cover problem and using the PCP theorem, we have

Theorem: For any ε > 0, there is a finite alphabet Σ such that GAP-LC1,ε(Σ) is NP-hard.

Hence, to show s/c-hardness for MAX-E3-Lin, it suffices to construct a PCP for GAP-LC1,ε(Σ)
(with soundness s and completeness c) which only queries 3 bits and checks the parity of their
sum.

2.2 Hastad’s PCP for GAP-LC1,ε(Σ)

Let Σ = {1, . . . ,m}. As a first try, our verifier could simply pick a random edge (u, v) ∈ E,
ask for the labels a(u) and a(v) and just check if π(u,v)(au) = av. However, these labels belong

5Rambunctious provers can always troll the verifier with arbitrarily long junk answers, but here we only
consider the size of answers that could possibly cause the verifier to accept.

6One can take r = O(log 1/ε).
7For non-uniform distributions, one needs to use a weighted version of Label-Cover, but we ignore this

technicality.

4

to {1, . . . ,m}, so it’s not clear how to turn this predicate into a linear equation over F2. As
is common in the construction and analysis of certain PCPs, it is convenient to work with a
particular boolean encoding of assignments called the long code. Given a

8 m
∈ {1, . . . ,m}, the

long code of a is just the string of length 2 with entires indexed by x ∈ {−1, 1}m such
that the x entry of the string is xa. We also use the notation9 x ◦ π to mean the string
(xπ(1), . . . , xπ(m)), for x = (x1, . . . , xm) ∈ {−1, 1}m and π : [m]→ [m].

Hastad’s PCP: The verifier expects the proof to contain the list of long codes of the assign-
ments to the vertices of G. She picks an edge e = (u, v) ∈ E uniformly at random, and two
independent, uniform random strings x, y ∈ {−1, 1}m. Also, select a random µ ∈ {−1, 1}m
with an ε-bias, that is,

µi =

{
1 with probability 1− ε
−1 with probability ε

Letting f and g be the supposed long codes of a(v) and a(u), respectively, the verifier checks
the condition

f(x)g(y)g((x ◦ π)yµ) = 1 (4)

Remark: We need to make our verifier just a little bit more intelligent – if instead of a legitimate
long code the prover just sends all 1’s, the test (4) will always pass and the verifier will accept.
We do want to make it unlikely for the verifier to accept something that isn’t a long code, but
we can’t afford to add any additional checks and still extract optimal hardness for E3-Lin. As
we will see, however, as long as the proof is balanced (i.e. contains the same number of 1’s
and -1’s), this test is already pretty good at weeding out fake long codes. The easy fix, which
Hastad calls folding over True, is to simply pretend the code is balanced in exactly the way a
long code would be – for each pair {x,−x}, fix some choice for x and whenever the (−x)-entry
of a code is needed, just query the x-entry and negate the answer. This is the full description
of Hastad’s PCP; it remains to analyze the soundness and completeness parameters.

Completeness: If not for the biased noise µ, the condition (4) would always hold if f and g
were actually the long codes of a(v) and a(u), and the edge constraints πe(a(u)) = a(v) were
satisfied. Indeed, in this case, for any x, y, f(x) = xa(v) and g(y) = ya(u), while

g((x ◦ π)yµ) = xπ(a(u))ya(u)µa(u) (5)

and hence (4) is only violated when µa(u) = −1, which happens with probability ε. Hence, the
completeness is 1− ε.

Soundness: As always, soundness is more involved and this is where the Fourier analysis
comes in.

8Thinking of a as an element of {−1, 1}logm, and strings x ∈ {−1, 1}m as (truth tables of) functions f :
{−1, 1}logm → {−1, 1}, then the long code of a simply lists f(a) for all such functions f .

9Our notation and style throughout this section is based more directly on the lecture notes
(http://courses.cs.washington.edu/courses/cse533/05au/) by Ryan O’Donnell than on Hastad’s original expo-
sition, although what’s actually happening is entirely the same as in the original paper.

5

http://courses.cs.washington.edu/courses/cse533/05au/

Definitions:(Fourier analysis) Given a subset S ⊆ [m], define the linear parity function
χ m
S : {−1, 1} → {−1, 1} to be

χS(x) =
i

∏
xi

∈S

We define the inner product 〈f, g〉 of two functions on {−1, 1}m to be 1 f2m x∈{−1,1}m (x)g(x),
and it’s not hard to see that the parity functions χS satisfy

∑
1〈χS , χT 〉 =

0
χ

2
x

∑
S∆T (x) =

m
∈{−1,1}m

{
if S 6= T

(6)
1 else

and hence they form a complete orthonormal basis for the space of functions on {−1, 1}m.
ˆAccordingly, we define the Fourier coefficients of a function f to be f(S) = 〈f, χS〉. In

ˆparticular, if the truth table of f is balanced, then f(∅) = 0. Moreover, since 〈f, f〉 = 1 for
ˆBoolean-valued functions, we have Parseval’s formula 1 = 2

S f(S) . We’ll also want to use
the notation

τ(S) := {j ∈ [m] such that π

∑
| −1{j} ∩ S| is odd} (7)

since then χS(x ◦ π) = χτ(S)(x).

Now we can use the basic tools of Fourier analysis to derive a useful expression for the prob-
ability of Hastad’s verifier accepting. Conditioning on a particular choice of edge (u, v) we
have

1
Pr[acc|(u, v)] =

2
+

1
Eu,v,x,y,µ[f(x)g(y)g((x ◦ π)yµ)] (8)

2

Writing f and g (again, viewed as truth tables of functions) in terms of their Fourier expansions,
we can expand

Eu,v,x,y,µ[f(x)g(y)g((x ◦ ˆπ)yµ)] =
∑

f(S)ĝ(T)ĝ(U)Ex,y,µ[χS(x)χT (y)χU ((x ◦ π)yµ)]
S,T,U

Here we observe that χU ((x ◦ π)yµ) = χτ(U)(x)χU (y)χU (µ) and use independence to rewrite
the sum as ∑

f̂(S)ĝ(T)ĝ(U)Ex[χS(x)χτ(U)(x)]Ey[χT (y)χU (y)]Eµ[χU (µ)] (9)
S,T,U

By independence of µ’s entries, we see Eµ[χU (µ)] = i U E[µi] = (1−2ε)|U |. By orthogonality,∈
Ex[χS(x)χτ(U)(x)] = 〈χS , χτ(U)〉 = δS,τ(U) and similarly

∏
Ey[χT (y)χU (y)] = δT,U . Thus, the

only terms which don’t contribute zero to the sum occur when T = U and S = τ(T), and so
the sum becomes ∑

f̂(τ(T))ĝ(T)2(1− 2ε)|T | (10)
T

Thus, if Pr[acc] ≥ 1 + δ, then2

E(u,v)[
∑

f̂(τ(T))ĝ(T)2(1− 2ε)|T |] ≥ 2δ (11)
T

6

and thus (since the sum inside the expectation is always at most 1), for at least a δ fraction of
edges (u, v), we have ∑

f̂(τ(T))ĝ(T)2(1− 2ε)|T | ≥ δ (12)
T

Let us call such an edge a good edge. We need to somehow turn this observation into an
assignment of labels to the vertices in our Label Cover instance which satisfies a decent portion
of the edge constraints. To show the existence of such a labeling, it suffices to show that a
random labelling has this property when we chose our labels according to some (cleverly
constructed) distribution. Hastad’s main idea is this: we should choose labels which

ˆcontribute the most to the mass of the Fourier coefficients f(S), ĝ(S) from the
proof string. More precisely, for each vertex u ∈ V1, pick a set S ⊂ [m] with probability
ĝ(S)2, and then choose u’s label a(u) uniformly at random from S; we do the same for v ∈ V2

using the Fourier coefficients of f instead.10 Thus, the probability that u gets the label a ∈ [m]
is ∑ 1

ĝ(S)2

S3a
(13)

|S|

From this expression (which is closely related to an analytic property of Boolean functions
called influence that will play an important role in Section 3), we can see that this distribution
does a good job of favoring the “important” labels; indeed, if g were (very close to) the long
code of the label a, then we would pick a(u) = a with probability (very close to) 1. Moreover,
labeling vertices at random in this way, we have that for any edge (u, v), the probability of the
event π(a(u)) = a(v) is at least ∑ 1

f̂(τ(S))2ĝ(S)2

S

(14)
|S|

since if we label u from S, then by selecting τ(S) as our subset to label v, we automatically
know that we’ll succeed with probability at least 1/|S|, as every element of τ(S) has an odd
(and hence non-zero!) number of π-preimages in S. This expression already bears a striking
resemblance to the expression in (12), which we know is at least δ for the good edges. Indeed,
using only a bit of standard analysis11, Hastad is able to show12

∑ 1
f̂(τ(S))2ĝ(S)2

S

2

≥ ˆ4ε f(τ(T))ĝ(T)2(1− 2ε)|T | (15)
|S|

(∑
T

)

which is, for good edges, at least 4εδ2, and since at least δ of the edges are good, our random
assignment will satisfy at least 4εδ3 edge constraints. Thus, if our Label-Cover instance were
only ε′ < 4εδ3 satisfiable, Hastad’s verifier must accept with probability less than 1/2 + δ.

10 ∅ ⇒ ˆWe never choose S = because of folding (f balanced = f(∅) = 0), and our probabilities add up to 1
by Parseval’s identity.

11We omit the details, but this basically follows from the Cauchy-Schwartz inequality and the simple expo-
nential inequality 1/|S| ≥ 4ε(1

12
− 2ε)2|S|.

In this step, we can see one reason why it was essential to introduce the noise µ – otherwise, Fourier coeffi-
cients of large sets S would receive no “penalty” (1− 2ε)|S|, which was needed to lower bound the probabilistic
penalty 1

|S| .

7

Since GAP-LC1,ε(Σ) is NP-hard for any ε′ > 0, we have established13 the main theorem of this
section and of Hastad’s paper:

Theorem: [Hastad, 2001] For any ε > 0, GAP-E3-Lin1−ε, 1+ε is NP-hard. In particular, there
2

is no efficient (1/2 + ε)-approximation algorithm for MAX-E3-Lin unless P=NP.

Finally, we remark that both of the parameters in this theorem are optimal for GAP-E3-
Lin1−ε, 1+ε, unless P=NP. Indeed, negating an assignment to an E3-Lin instance flips the value

2

of each constraint, and so the better of any assignment and its negation is always a 1/2-
approximation; on the completeness side, one can use Gaussian elimination to determine if a
linear system over any field F has a solution in polynomial time.

2.3 From MAX-E3-Lin to MAX-CUT with an optimal gadget

To translate MAX-E3-Lin hardness to MAX-CUT, we use a reduction technique based on the
familiar idea of gadgets. Gadgets have long been ubiquitous tools in hardness of approximation
(and computer science in general), and while studying a particular gadget is usually not so
enlightening, we use the section as an opportunity to touch upon an important paper of
Trevisan, Sorkin, Sudan and Williamson [12]. In this paper, the authors formally define the
notion of an α-gadget, and give an efficient, linear programming based method for not only
finding gadgets, but also, remarkably, proving bounds for the best possible gadget reducing one
CSP to another.

Definition: [12] Given a constraint function f : {0, 1}k → {0, 1} and a constraint family
F = {C1, . . . , Cm} over primary variables X1, . . . , Xk and auxilliary variables Y1, . . . , Yn, we
define a (strict)-α-gadget Γ = (Y,C,w) to be a collection of non-negative weights wi such
that, for boolean assignments x = (xi)

k
i=1 to the Xi and y = (yi)

n
i=1 to the Yi, we have

f(x) = 1 =⇒ max
∑m

wjCj(x, y) = α (16)
y∈{0,1}n

j=1

m

f(x) = 0 =⇒ max wjCj(x, y) = α 1 (17)
y∈{0,1}n

∑
j=1

−

It’s not hard to see that when it comes to transferring hardness of approximation from one
problem to another, a smaller α means a better hardness result – a gadget achieving the
minimal α among all gadgets from f → F is therefore called optimal. Trevisan et al. construct
a strict and optimal 8-gadget from the constraint function f = f(x1, x2, x3) = 1 +x1 +x2 +x3

mod 2 to the constraint family CUT0 := {CUT, id}, where CUT(x1, x2) = x1 + x2 mod 2,
as well as a strict and optimal 9-gadget from 1 − f to CUT0. The inclusion of the identity
constraint in CUT0 is not of any consequence for MAX-CUT – by adding a special vertex
called 0, we can replace the condition id(Xi) = 1 with CUT0(Xi, 0) = 1 and maintain the
same number of satisfied constraints14.

13Technically, to show NP-hardness we need to describe a reduction from GAP-LC1,ε(Σ). This is routine and
essentially amounts to showing that the PCP we constructed can only ask about polynomially many E3-Lin

8

The graph shown above, with all implied edge weights 0.5, is an optimal 8-gadget reducing
f(x) = x1 + x2 + x3 + 1 to CUT0: that is, if f(x) = 1, then there is a way to extend this
assignment to a cut on the gadget (which assigns 0 to 0) with weight 8, while if f(x) = 0, then
the best possible extension yields a cut of weight 7. After constructing a similar 9-gadget15

for 1− f(x), we have a reduction from MAX-E3-Lin to MAX-CUT, given by building a graph
G out of these gadgets corresponding to each equation in an E3-Lin system Π. A simple
counting argument shows that, for any ε > 0, a cut on G with weight at least 16

17 + ε times
the weight of an optimal cut in G corresponds to an assignment satisfying at least 1 + δ times2
the optimal number of equations satisfiable in Π (for some δ = δ(ε) > 0). Thus, we obtain
Hastad’s hardness result:

Theorem:[Hastad, 2001] MAX-CUT is NP-hard to approximate within a factor of 16 + ε, for17
any ε > 0.

In [4], Hastad uses similar arguments for many other CSPs besides MAX-CUT, of course, and
many of these results are provably optimal. Almost always the algorithms achieving these
thresholds are quite simple and natural, which seems to agree with the intuition that if an
algorithm needs to do a bunch of circuitous and complicated things, the space of possible
improvements becomes huge, and so such an algorithm is unlikely to be optimal.16 For MAX-
CUT however, the naive greedy algorithm and its modifications can only achieve 1 + o(1)2
approximations, which is quite far from Hastad’s upper bound. Up next, we’ll describe an
approximation for MAX-CUT by Goemans and Williamson, which, in light of the work of
Khot et al. [7] and Raghavendra [11], may need to be thought of as the “natural” efficient
approximation algorithm for MAX-CUT.

equations.
14Essentially, this just allows us to have one special reference vertex, which can always assumed to get the

value 0 (just negate the whole assignment otherwise, which doesn’t change the cut).
15The 9-gadget can be obtained from the 8-gadget by replacing the 0 vertex by a vertex Z, and adding an

edge of weight 1 from 0 to Z.
16For example, the simple greedy algorithm for MAX-E3-SAT which just maximizes the expected number of

clauses satisfied by the remaining variables achieves the optimal (up to o(1)) approximation factor of 7/8.

9

3 UGC-Hardness for (αGW + ε)-approximating MAX-CUT

3.1 The Goemans-Williamson Algorithm for MAX-CUT

Recall that the weight of a cut (thought of as a {−1, 1}-assignment of the xi variables) is∑ wij(1− xixj)

ij
2

and thus MAX-CUT becomes the integer quadratic program

max
xi=±1

∑ wij(1− xixj)

ij

(18)
2

While integer programming is likely intractable, the above problem admits a natural semi-
definite relaxation, which forms the basis of the Goemans-Williamson algorithm. Without
further ado, here is a description and analysis of their algorithm:

The Goemans-Williamson Algorithm: Let Sn−1 ⊂ Rn denote the unit sphere. Using
standard algorithms for convex optimization (e.g. the ellipsoid method), efficiently obtain (to
arbitrary precision) an optimal solution {v1, . . . , vn} to the semi-definite program

)
max

vi∈Sn 1

∑ wij(1− 〈vi, vj〉
−

ij

(19)
2

which is evidently a relaxation of (18). Then pick a uniformly random vector a ∈ Sn−1

and set xi = sgn(〈a, vi〉). The probability that xi 6= xj is, by the geometry of the sphere,
proportional to the angle between vi and vj , and so their expected contribution to the cut

w
is ij arccosπ 〈vi, vj〉. Thus the αGW factor arises from computing the worst-case ratio of this
contribution to the corresponding contribution in (19).

Despite the reasonable simplicity of this algorithm, there doesn’t seem to be anything obviously
optimal about it. While the integrality gap for the SDP (19) has since been proven to be exactly
αGW , this doesn’t rule out the possibility of improvement by adding constraints17 to the SDP
and modifying the rounding scheme, as has been exploited to achieve better approximation
ratios for special classes of graphs. This is why the result of Khot et. al. [7] comes as something
of a surprise. As we’ll see, however, the analysis behind the Majority is Stablest theorem [9] has
something to say about the fundamental geometry behind Goemans-Williamson’s optimality.
Indeed, an even stronger invariance principle was used by Raghavendra in 2008 [11] to prove
a remarkably general result in this direction: for essentially every CSP, the integrality gap of
a natural SDP relaxation of the CSP is equal to its inapproximability threshold, assuming the
Unique Games Conjecture.

17One common modification is to add the triangle inequality constraints: ‖vi−v 2 2
j‖ +‖vj−vk‖ ≥ ‖vi−vk‖2.

Khot and Vishnoi [8] were able to show that this less-relaxed relaxation of MAX-CUT still has an integrality
gap of αGW , however.

10

3.2 Unique Label Cover and the UGC

Looking back at the construction of Hastad’s E3-Lin-based PCP for GAP-LC1,ε(Σ), one might
wonder if we could modify the test in such a way that we could obtain MAX-CUT hardness
directly from Label Cover hardness, as Hastad does for a variety of other k-CSPs, for k ≥ 3.
As it turns out, when k = 2, the bottleneck in such attempts comes from the fact that
the projections πe : Σ → Σ in a Label Cover instance can fail to be injective, and thus
Khot suggested using Unique Label Cover as a starting point in proving hardness for 2-CSPs.
Unique Label Cover, as Khot defined it, is the restricted form of Label Cover in which all
edge constraints πe are actually permutations. The attentive reader may have noticed that
Gap-ULC1,1 ε(Σ) is actually in P – indeed, the label of one vertex uniquely determines the−
labels of all other vertices in its connected component. Thus, Khot put forth the following
conjecture, which is, in a sense, the best hardness statement we could dream of for Unique
Label Cover:

The Unique Games Conjecture: For any ε, δ > 0, there is a constant M = M(ε, δ) such
that Gap-ULC1−δ,ε(Σ) is NP-hard for |Σ| ≥M .

Since its introduction in 2002, this conjecture has become a central figure in hardness of
approximation, yet there is still a lack of convincing evidence for either its truth or its falsehood.
However, numerous algorithms have been discovered which show certain relationships that the
parameters in the UGC must obey, if it is to hold. A survey by Khot [6] contains a nice
summary of recent results in this direction. Of course, at this point any hardness result (not
just NP-hardness) for Unique Label Cover will have important algorithmic implications, and
thus the truth of UGC is perhaps less important than how far from true it is.

3.3 Influence, Noise Stability, and Majority-is-Stablest

To prove UGC-Hardness of MAX-CUT, Khot et al. construct a PCP for Unique Label Cover
which, in a vague sense, is the 2-query analogue of Hastad’s 3-query PCP for Label Cover. The
PCPs and their soundness/completeness analysis resemble one another closely, but establishing
soundness in the 2-query case requires a much deeper result from the analysis of Boolean
functions called the Majority Is Stablest theorem, which we state below after introducing a bit
of relevant terminology.

Definitions:(More Fourier analysis) The influence of coordinate i on a function f : {−1, 1}n →
{−1, 1} is defined as

ˆInfi(f) := Pr[f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . ,−xi, . . . , xn)] =
∑

f(S)2 (20)
S3i

Inspired by the second equality, we also define the k-degree influence of coordinate i to be

ˆInfki (f) =

S3

∑
f(S)2

i,|S|≤k

11

To build some intuition, the reader should check that

k

{
1 if i ∈ S and |S| ≤ k

Infi (χS) = Infi(ORn) = Infi(ANDn) = 21−n
0 else

Infi(MAJn) =

(
n− 1
n−1

2

)
21−n =

√
2/π√ +O(n−3/2) (for odd n)
n

A related notion is noise stability of f , which, rather than flipping one bit and measuring how
likely it is that f changes, flips a certain “fraction” of bits at random. More precisely, let ρ
be a fixed parameter in [−1, 1], let x be a uniformly random string in {−1, 1}n and let y be
ρ-correlated copy of x, that is, set yi = xi with probability 1

2 + ρ , and yi =2 −xi otherwise.
Then the noise stability of f at ρ is defined to be18

Sρ(f) = E ˆ
x,y[f(x)f(y)] = 2 Pr[f(x) = f(y)]− 1 =

∑
ρ|S|f(S)2

S

Observe that dictator functions χi have noise stability ρ, and more generally, all parity functions
have Sρ(χ

S
S) = ρ| |. Using the Central Limit Theorem, it isn’t too hard to show that the

asymptotic noise stability of the majority function MAJn : {−1, 1}n → {−1, 1} obeys the
formula

2 arccos ρ
lim Sρ(MAJn) = 1
n→∞

− (21)
π

We can recast the noise stability of a function f in terms of the probability that the following
“6=” test accepts: choose x ∈ {−1, 1}n uniformly at random, and choose µ ∈ {−1, 1

1
}n such

that µi = −1 with probability −ρ
2 and 1 otherwise; then test f(x) 6= f(xµ). The probability

such a test accepts is of course 1
2 −

1
2Sρ(f). Hence, the probability this test accepts a dictator

is 1
2 −

1
2ρ, while the probability it accepts MAJn is very close to arccos ρ for large n. What canπ

we say about this probability for general f? It turns out that when f has small influences, it
won’t pass this test with probability significantly greater than MAJn – this is essentially the
content of the Majority is Stablest theorem.

Before stating the precise theorem we need, we’ll motivate it with a heuristic analysis in the
case when f : {−1, 1}∑n → {−1, 1} is a half-space function, i.e. f(x) = sgn(a · x), where we
can rescale to assume i a

2
i = 1. It’s not so difficult to check that f having “small influences”

means each ai is fairly small. Then, as a · x is a linear combination of i.i.d. random variables
with small coefficients, a strong form of the Central Limit Theorem implies that the distribution
of a · x will be roughly Gaussian. Setting b = aµ, then f(xµ) = b · x, which will therefore also
be roughly Gaussian, conditioned on a fixed choice of µ. Moreover, a 2-dimensional version of
the Central Limit Theorem tells us that the joint distribution of a · x and b · x will be close
to the joint distribution of a · g and b · g, where g is a vector with independent mean-zero
Gaussian entries. By symmetry, the distribution of the direction of the Gaussian vector g is
actually uniform, and thus the probability that f passes the test should be roughly equal to
the probability that a uniformly random hyperplane through the origin separates the vectors

18The probabilistic expressions in this section are only valid for Boolean-valued f , but the other expressions
make sense for general f : {−1, 1}n → R, and we’ll need these more general definitions in the next section.

12

a and b, which, as we saw in the analysis of Goemans-Williamson, is

arccos (a · b)
π

=
arccos (

∑n
i=1 a

2
iµi)

π

nWith high probability over µ, we’ll have (by a law of large numbers) that i=1 a
2
iµi ≈ ρ, and

hence we don’t expect a low-influence half-space function to pass the test with probability
higher than MAJn (see (21)). We can now state the main ingredient needed

∑
for the analysis

of the PCP:

Majority is Stablest Theorem, version 2: Let ε > 0 and ρ ∈ (−1, 0) be fixed. Then there
exist constants K, δ > 0 such that if f : {−1, 1}n → [−1, 1] satisfies

InfK ˆ
i (f) = (

S3i,

∑
f S)2 ≤ δ

|S|≤K

for each coordinate i, then

)2 2
Sρ(f) =

∑
ρ|S|f̂(S ≥ 1−

S

arccos ρ
π

− ε

The proof, as given in [9], first establishes a general invariance principle for multilinear poly-
nomials with low influence. An invariance principle is a type of central limit theorem that
holds for a wider class of multilinear functions than just linear combinations as in the usual
CLT. More precisely, in [9] the authors show that for functions of the form

Q(X1, . . . , Xn) =

S

∑
cS Xi

⊆[n] i

∏
∈S

with small influences
∑

S i c
2
S τ for all i, and independent random variables Xi with mean

0, variance 1 and E|X |3
3 ≤

i ≤ β, we have

sup |Pr[Q(X , . . . ,X) ≤ t]− Pr[Q(G , . . . , G) ≤ t]| ≤ O(dβ1/3
1 n 1 n τ1/8d)

t

where the Gi are independent standard Gaussians and d is the degree of Q. We won’t discuss
the proof here19, as the analysis is quite technical, and we don’t want to keep the impatient
reader waiting any longer. Let’s check out the PCP.

3.4 The 2-query 6= PCP of Khot, Kindler, Mossel and O’Donnell

Suppose we’re given an instance (V,W,E, [m], {πe}) of Label Cover, which is either at least
(1− η)-satisfiable or at most γ-satisfiable, where we’ll choose η, γ to be sufficiently small later.
Our verifier will expect as a proof the long code of the label of each vertex w ∈W . Note that
in Hastad’s PCP, our verifier expected the proof to provide long codes for every vertex in V
as well as W . With only 2 queries, however, it’s not clear how we could do anything useful

19When Khot et al. originally published [7], the full proof of Majority is Stablest was not known, and it was
left as a conjecture which was later resolved by [9].

13

with knowledge of one v label and one w label, which is why our two queries will ask about
two vertices w,w′ ∈W that share a neighbor v ∈ V .

The KKMO PCP: Select a random vertex v ∈ V uniformly at random, and two of its
neighbors w,w′ ∈W at random. Suppose fw and fw′ are the supposed long codes of the labels
for w and w′ respectively, and let π = π(v,w) and π′ = π(v,w). We then choose x ∈ {−1, 1′ }m
uniformly at random, and (like Hastad) choose a noisy µ {−1, 1

1
∈ }m, with independent bits

equal to 1 with probability 2 + 1ρ, and -1 otherwise, where ρ ∈ (−1, 0) will be chosen later.2
Then accept iff

fw(x ◦ π) 6= fw′((xµ) ◦ π′). (22)

Completeness: Fix a labelling which satisfies at least (1 − η)-fraction of the edges. Then a
simple union bound shows with probability at least (1 − 2η), both of the edges (v, w), (v, w′)
we select will be satisfied by this labelling. If fw and fw′ are actually long codes of labels a(w)
and a(w′), then fw(x ◦ π) = xπ(a(w)) = xa(v), while fw′(xµ ◦ π′) = µa(v)xπ′(a(w′)) = µa(v)xa(v),

which are unequal precisely when µ 1
a(v) = −1, which happens with probability 2 −

1
2ρ. Thus,

the completeness of the test is at least (1− 2η)(1
2 −

1ρ).2

Soundness: We show that if some proof causes the test to pass with probability at least
(arccos ρ)/π + ε, then we can extract from it a labelling which satisfies at least a γ = γ(ε, ρ)
fraction of the edge constraints. As this number will not depend on m = |Σ|, we can take m
large enough so that the UGC says GAP-ULC1 η,γ([m]) is NP-hard. Using independence, we−
can derive the following formula for the acceptance probability:

1
Pr[acc] = Ev,w,w′,x,µ[

2
− 1

2
fw(x ◦ π)fw′(xµ ◦ π′)]

=
1

2
− 1

Ev,x,µ Ew[fw(x π)]Ew′ [fw′(xµ π′)] (23)
2

◦ ◦

If we define, for each v

[]
∈ V ,

gv(x) = Ew v[f (∼ w x ◦ πw)]

then (23) becomes

1
Pr[acc] =

2
− 1

2
Ev[Ex,µ[gv(x)gv(xµ)]] =

1

2
− 1

Ev[Sρ(gv)]
2

Glancing back at our test (22), this formula actually seems quite natural – conversely, the test
itself now seems a bit less mysterious, and it shouldn’t be hard to see why the Majority is
Stablest theorem is going to be useful here. If Pr[acc] > (arccos ρ)/π+ ε, then by an averaging
argument,

2
Sρ(gv) ≤ 1− arccos ρ

π
− ε (24)

for at least a fraction ε/2 of the vertices v ∈ V – call such vertices good. By the Majority is
Stablest theorem, for good v, the function gv must have at least one influential coordinate,
say jv, such that gv has enough of its Fourier mass on the coefficients influenced by jv to
make gv look (very roughly) like the dictator function f(x) = xjv . Since gv is an average of
fw(x ◦ πw) over all neighboring w, it should be the case that a decent fraction of these w look
(very roughly) like the dictator function f(x) = xπ−1 . Thus, if we label all of the vertices v

w (jv)

14

and w by the index of the dictator functions they roughly resemble, we should have a decent
chance of satisfying a decent fraction of the edge constraints. Let’s carry out this argument
more formally using basic Fourier analysis, in a way reminiscent of Hastad.

By our choice of label jv from the Majority is Stablest theorem,

InfKjvgv = ĝ (S)2
v ≥ δ

S3jv

∑
,|S|≤K

By linearity, one can check from the definition of gv that

E ˆĝv(S) = w∼v[f(π−1
w (S))]

and hence

δ ≤
S3jv

∑
ˆĝv(S)2 =

∑
E 1
w∼v[f(π 2 ˆ(1 2

w
− (S))]) ≤ Ew [f(π−∼v w (S))] (25)

,|S|≤K S3jv ,|S|≤K S3jv

∑
,|S|≤K

Here it becomes important that the projections πw are bijections – this gives us the equality
of sets

{π−1
w (S) : j ∈ S, |S| ≤ K} = {T : π−1

v w (jv) ∈ T, |T | ≤ K}

and thus the sum on the right in (25) is really Ew v[Inf 1 (fw)]. By another averaging∼ πw
− (jv)

argument, at least a δ/2 fraction of w adjacent to each good v have Infπ−1 (fw)
w (jv) ≥ δ/2. For

any w, we’ll choose a label uniformly at random from the set

Cw := {i ∈ [m] : InfKi (fw) ≥ δ/2}

ˆ(or∑a just any random label if Cw is empty.) Since
∑ K 2

i [Inf∈ m] i (f) = S f(S)|S|≤K | | ≤
ˆK S f(S)2 = K, it follows that |Cw| ≤ 2K/δ. Thus, for a good edge v, at least a fraction

(δ/2)(δ/2K) of edges (v, w) are satisfied in expectation. Since at least a fraction

∑
ε/2 vertices

v are good, we’ve proven the existence of a labelling which satisfies a fraction

γ := (ε/2)(δ/2)(δ/2K)

of edge constraints. Thus, we have soundness arccos ρ + ε.π

Since η and ε can be taken as small as we like, our PCP implies a hardness of approximation
factor20

arccos ρ
1
2 −

1 + ε
ρ2

for any ρ ∈ (−1, 0) and ε > 0: optimizing over ρ in this interval recovers precisely the Goemans-
Williams constant, αGW , plus an arbitrarily small ε. This implies:

Theorem:[Khot, Kindler, Mossel, O’Donnell, 2005] If we can (αGW + ε)-approximate MAX-
CUT in polynomial time for some ε > 0, then for sufficiently small η, γ > 0, GAP-ULC1−η,γ([m])
is in P for all m.

20This factor is (up to ε+ o(1) error) equal to the ratio of the probability that MAJn passes the 6= test with
parameter ρ to the probability that a dictator passes the test.

15

References

[1] Arora, S., Lund, C., Motawani, R., Sudan, M., and Szegedy, M. Proof Verification and
the hardness of approximation problems. Journal of the ACM, 45(3): 505–555, 1998.

[2] Crescenzi, P., Silvestri, R., and Trevisan, L. On weighted vs unweighted versions of com-
binatorial optimization problems. Information and Computation, 167(1): 10–26, 2001.

[3] Hastad, J., Clique is hard to approximate within n1−ε. Acta Math., 182:105–142, 1999.

[4] Hastad, J., Some optimal inapproximability results. Journal of the ACM, 48:798–869,
2001.

[5] Kahn, J., Kalai, G. and Linial, N. The influence of variables on boolean functions. In
Proc. 29th Ann. IEEE Symp. on Foundations of Comp. Sci., 68–80, 1988.

[6] Khot, S. On the Unique Games Conjecture, ftp.cs.nyu.edu/ khot/papers/UGCSurvey.pdf

[7] Khot, S., Kindler, G., Mossel, E. and O’Donnell, R. Optimal Inapproximability Results
for MAX-CUT and Other 2-Variable CSPs? Electronic Colloquium on Computational
Complexity, Report No. 101, 2005.

[8] Khot, S., Vishnoi, N. The unique games conjecture, integrality gap for cut problems
and embeddability of negative type metrics into `1. In Proc. 46th IEEE Symposium on
Foundations of Computer Science, 2005.

[9] Mossel, E., O’Donnell, R., Oleszkiewicz, K. Noise stability of functions with low influences:
Invariance and optimality. Annals of Mathematics, 171: 295 – 341, 2005.

[10] Raghavendra, P. Optimal algorithms and inapproximability results for every csp? In Proc.
ACM Symposium on the Theory of Computing, 245–254, 2008.

[11] Raz, R. A parallel repetition theorem. SIAM J. of Computing, 27(3): 763-803, 1998.

[12] Trevisan, L., Sorkin, G., Sudan, M., and Williamson, D. Gadgets, approximation, and
linear programming. SIAM J. of Computing, 29, 2074–2097.

16

http://ftp.cs.nyu.edu/~khot/papers/UGCSurvey.pdf

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Introduction: A brief history of MAX-CUT
	Hastad's NP-Hardness for (1617+)-approximating MAX-CUT
	Two-Prover One-Round Games and the Label Cover problem
	Hastad's PCP for GAP-LC1, ()
	From MAX-E3-Lin to MAX-CUT with an optimal gadget

	UGC-Hardness for (GW+)-approximating MAX-CUT
	The Goemans-Williamson Algorithm for MAX-CUT
	Unique Label Cover and the UGC
	Influence, Noise Stability, and Majority-is-Stablest
	The 2-query = PCP of Khot, Kindler, Mossel and O'Donnell

