
A Survey of Parallel Repetition and Projection Games

Abstract

Parallel Repetition governs the decay of the verification probability in a repeated 2-prover
interactive protocol. We will first analyze Feige’s game which shows the naive exponential bound
does not hold. Then we will state Raz’s original bound[6] and observe some interesting properties
of it. Though the original proof by Raz is very involved, we will give a high level proof idea and
analyze major steps involved in Holenstein’s simplification as discussed by Rao[4]. Afterwards
we will look at a variant of the bound recently discovered by Dinur and Steurer[2] when applied
to projection games and compare it with that discovered by Rao. Critical definitions and
lemmas are analyzed so that the reader can attain an intuitive reasoning for the derivation of
these bounds. This is especially important in the case of Dinur and Steurer since they take a
spectral graph theory approach but still utilize the notion of correlated sampling observed in
Holenstein’s simplification. Afterwards we discuss applications and tightness of some parallel
repetition bounds.

1 Introduction

Suppose Alice flips a fair coin n times and she wins a dollar if and only if she guesses every
outcome correctly. Clearly the expected value of this game is 1 Bob2n . Now suppose also flips n
fair coins each but he can’t share the results with Alice. Both of them submit ”answers“ xi and yi
respectively and in the range {0, 1}. If the flip results were ri and qi, they win on flip i if and only
if ri+xi = qi+yi mod 2. It is not hard to see in this case either that no matter what strategy they
decide to use, there is a 1

2 probability of winning on each flip and 1 probabilit2n y of winning all flips.
In general if some game G had some winning probability via strategy σ, which we denote as the
value of the game or val(G), then Gn, the game repeated n times, has value val(Gn) ≥ valn(G) since
we can apply σ on each game. The next question to ask is if this bound tight i.e. val(Gn) = valn(G).
This is true for the simple two player game we mentioned earlier but it is not true in general for
games of the following form.

Definition 1.1. A two player game G with val(G) and n-fold repeated game Gn with val(Gn) refers
to the following process.

• A referee asks Player A and Player B questions X and Y respectively where (X,Y ) is chosen
from some distribution.

• Players A and B respond with answers α and β respectively.

• The referee evaluates some predicate V (X,Y, α, β) and the game is won if the predicate is
satisfied.

• G is a single iteration of the above and val(G) is the maximum winning probability over answer
strategies (σ, π). If the strategies are randomized, we take the expected value.
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• Gn involves n simultaneous plays of the game where the referee asks questions (Xi, Yi) each
independently drawn from the same distribution, the players respond with answers αi and
βi. The referee evaluates the predicate V for all (Xi, Yi, αi, βi) and val(Gn) is the maximum
probability the predicate is satisfied for all i over all strategies ((σ1, π1), . . . , (σn, πn)). If the
strategies are randomized, we take the expected value.

Note that the game can allow for a publicly shared random string as the value can be matched by
a deterministic strategy. We will use A and B interchangeably with Alice and Bob from now on. If
the two players can develop a strategy such that winning earlier games can influence later games,
then the value can actually exceed the trivial bound. We indeed observe this in Feige’s game.

Proposition 1.2. (Feige’s Game) The following two player game G satisfies val(G) = 1
2 and

val(G2) = 1 .2

• The referee sends A and B random bits X and Y .

• The players respond with answers of the form α, β ∈ {1, 2} × {0, 1} and win if and only if
α = β = (1, X) or α = β = (2, Y ).

Proof. For G we can have Alice respond with (1, X) while Bob responds with (1, Y ). We have
X = Y with probability 1

2 so the value of the game is 1 . For G2 we let2

α1 = (1, X1) α2 = (2, X1)

β1 = (1, Y2) β2 = (2, Y2)

Since X1 = Y2 with probability 1
2 , val(G2) = 1

2 .

Feige’s Game is a simple result regarding parallel repetition; it is not immediate obvious whether
there is exponential decay in the game’s value with respect to n. However if one were to repeat the
above game for n ≥ 3 we would eventually observe the expected exponential decay. Raz proved
the law governing the decay which was then simplified by Holenstein to give the following result
for general games:

Theorem 1.3. (Parallel Repetition Theorem) [Raz98, Hol07] If val(G) is at most 1− ε then there
2

is a universal constant γ > 0 such that the value of Gn is at most (1− ε)γε n/c where c is a bound
on the answer length.

Raz’s original proof was very complicated and was one of the first applications of information
theory in complexity theory. We will give an overview of the derivation of Holenstein’s simplification
in this survey. These results and other related bounds utilize the observation that a strategy which
results in a high probability of winning on a small subset of the repeated games implies the strategy
does worse on some game not in that subset. Feige’s counterexample circumvents this problem for
n = 2 but the parallel repetition theorem says it will fall victim to exponential decay although at
a non-obvious rate.

The parallel repetition theorem has very deep connections to complexity theory so it has been
of recent importance. The game is essentially a protocol involving two provers and a verifier and
we can use parallel repetition improve soundness via repetition in certain proof systems[3]. We
can also reformulate these games as graph representations of Constrained Satisfaction Problems
(CSPs).
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Definition 1.4. A two player game G with val(G) can be represented via a bipartite graph with
edge set E ⊆ V1 × V2. We associate each edge (X,Y ) with a constraint set VX,Y and redefine the
game as follows.

• A referee asks Player A and Player B sends X and Y respectively where (X,Y ) is an edge
chosen from some distribution.

• Players A and B respond with answers α and β respectively.

• The referee checks if (α, β) ∈ VX,Y and the game is won if so.

• G is a single iteration of the above and val(G) is the maximum fraction of edge constraints
satisfied over vertex assignments σ and π on V1 and V2 respectively. If the assignments are
randomized, we take the expected value.

• Gn involves n simultaneous plays of the game where the referee chooses edges (Xi, Yi) inde-
pendently and uniformly, the players respond with answers αi and βi. The referee checks
if (αi, βi) ∈ VXi,Yi and game i is won if so. Gn is won if all the games are won and
as a result val(Gn) is the fraction of constraints satisfied for each game over assignments
((σ1, π1), . . . , (σ n

n, πn)) where a constraint in this sense is of the form V⊗ . If the assignments
are randomized, we take the expected value.

The value of this CSP is equivalent to val(Gn). We know from the PCP Theorem, that there
exists some constant α such that obtaining an α-approximation to some CSP instance is NP-hard.
We can actually strengthen this using Parallel Repetition.

Theorem 1.5. (PCP + Parallel Repetition) For every ε > 0, there exists a CSP that is NP-hard
to ε-approximate.

Proof. Amplify the α-approximation CSP and by considering the value of its product graph Gn

and apply the parallel repetition theorem.

The CSP view of Parallel Repetition is intuitive and Dinur and Steurer use it to introduce the
notion of symmetrized games which they use in their derivation of a parallel repetition bound on
projection games. A projection game is a game where for each constraint on an edge, there is most
one acceptable answer from Alice given Bob’s answer.

Theorem 1.6. (Projection Games + Parallel Repetition) [DS14] If the value of a projection game
G is upper bounded by ρ then √

v Gn) ≤
(

2
al(

ρ n/

1 + ρ

) 2

Rao also derived a bound for projection games using the information theoretic approach but
Dinur and Steurer’s bound uses spectral graph theory and has stronger applications making it
interesting to study.
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2 Parallel Repetition

2.1 Statistical Distributions

The proof of the parallel repetition theorem focuses on analyzing the transformations of the
distributions of successes as we learn more about the results of the repeated games. We will need
to introduce some theory regarding certain types of distributions and their relationships to each
other. The distribution of a random variable follows the standard notion of a probability distri-
bution, containing information on the random variable’s probability of taking some instance. The
support of a distribution will be denoted by supp and it is the set of elements which map to a
positive value under the probability measure.

Many types of distribution will pop up in our analysis so we will need the following notation
to make things convenient. Assume we are given distributions A, B,and C and for each of the
following product distributions we provide the rule for its measure given the measures for events
involving A, B, and C.

• A⊗B ⊗ C
µ(A⊗B ⊗ C) = µA(A)µB(B)µC(C)

• AB ⊗ C
µ(AB ⊗ C) = µA,B(A,B)µC(C)

• AB ⊗ (C|B)
µ(AB ⊗ (C|B)) = µA,B(A,B)µC|B(C|B)

We will now state some facts regarding the closeness of distributions.

Definition 2.1. Let D and F be two random variables taking values from a common set S. Their
statistical distance ∆(D,F ) is defined as

∆(D,F ) = max(
T⊆S

|Pr[D ∈ T ]− Pr[F ∈ T ]|)

1
= =

2

∑
|Pr[D = s]− Pr[F s]|

s∈S

ε
Furthermore we say D is ε-close to F if ∆(D,F ) ≤ ε which we will denote by D ≈ F . The following
propositions are intuitive and follow easily.

ε ε
Proposition 2.2. If D ≈ F and g is any function on S, then g(D) ≈ g(F ).

ε1 ε2 ε1+ε2
Proposition 2.3. If D ≈ F and F ≈ G then D ≈ G.

Proposition 2.4. Suppose E1 and E2 are events such that Pr[E1] = Pr[E2] = λ, then ∆(D|E1, F |E2) ≤
∆(D,F )/λ.

ε
Proposition 2.5. If Pr[D 6= F ] ≤ ε, then D ≈ F .
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We observe that the closer two distributions are according to statistical distance, the more likely
they are to match. This will be our main tool of observing how distributions are related but we
will need to briefly analyze a related quantity.

Definition 2.6. The informational divergence between D and F is defined as

∇(D,F ) =
∑ ]

Pr[D = s] log
s

(
Pr[D = s

∈S
Pr[F = s]

)

The above definition assumes 0 log 0 = 0 and that if Pr[D=s] is not defined then (D,F ) = . NotePr[F=s] ∇ ∞
that the informational divergence is not symmetric, unlike the statistical distance, and models the
expected information lost when the distribution F is used in place of D. We easily obtain the
following facts

Fact 2.7. ∇(D,F ) ≥ [∆(D,F )]2

Fact 2.8. If E is an event such that Pr[E] = 2−d, then ∇(D|E,D) ≤ d.

Proof.

∇(D|E,D) =
∑ Pr[D = s E]

Pr[D = s|E] log
s

(
|

∈S
Pr[D = s]

)
=
∑
s∈S

Pr[D = s|E] log

(
Pr[D = s, E]

Pr[D = s] Pr[E]

)
∑ ∑ (

Pr[D = s, E]
= Pr[D = s|E] log(1/Pr[E]) + Pr[D = s|E] log

s∈S s∈S
Pr[D = s]

)
≤ log(1/Pr[E]) follows from Pr[D = s, E] ≤ Pr[D = s]

Fact 2.9. If D1, D2, . . . , Dn are independent random variables and F1, F2, . . . , Fn are some other
random variables, then ∑n

i=1

∇(Fi, Di) ≤ ∇(F1 . . . Fn, D1 . . . Dn)

where X1 . . . Xn denotes the distribution of (X1, . . . , Xn).

Proof. Since the Di’s are independent, the amount of information we lose when we consider the
combined distribution of Di’s over the Fi’s is greater than the sum of the individual losses.

We are now ready to prove a core lemma in Raz’s initial paper.

Lemma 2.10. Let D1, D2, . . . , Dn be independent random variables and E be an event such that
Pr[E] = 2−d, then

E[∆(Di
i

|E,Di)] ≤
√
d

n
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Proof.

E[∆(Di|E,Di)]
2 ≤ E[∆2(Di|E,Di)]

i i

≤ E[
i
∇(Di|E,Di)]

1
= (
n

∑
i

∇ Di|E,Di)

1≤ (
n
∇ D1 . . . Dn|E,D1 . . . Dn)

d≤
n

We will find this useful in the proof of Parallel Repetition as if we interpret the Di as a distri-
bution representing game i, the lemma implies the existence of some game i whose corresponding
distribution doesn’t get altered significantly when conditioned on a dense event e.g. some game
having a high winning probability. The following corollary also follows from a bit of menial algebra
and applying Lemma 2.10

Corollary 2.11. Let A,R,D1, . . . Dn be random variables and E be an event with Pr[E] = 2−d

such that the following hold:

• For every r, D1, . . . , Dn are independent conditioned on R = r.

• For every r, | supp(A|E ∧ (R = r))| ≤ 2h.

Then,

E[∆
i

(
(RA|E)⊗ (Di|R), RADi|E

)
] ≤

√
d+ h

n

Now assuming that d is small i.e. E is dense and h is small i.e. A has small support given E and
R, we can say for some i

Pr(RAD )
Pr( i|R) ≈ i|E

D
Pr(RA|E)

=
Pr(RADiE)

= Pr(Di AE
RAE)

|R )
Pr(

so the earlier claim that some distribution Di barely changes can be strengthened to only rely
on conditional independence on some random variable and we can further condition on a random
variable with small support.

2.2 Proof of Parallel Repetition

As we mentioned before, we want to first bound the probability of winning the remaining games
given successes on a set of games S ⊂ [n] in Gn. We shall denote WS to be the event all games in
S are won and appeal to the following lemma

Lemma 2.12. Let S be of size k. If G is such that val(G) = 1 − ε, the answers are of length c,
2 )

and P[W ≥ 2−
ε (n−k

S ] 342
+kc, then Ei6∈S [P[Wi|WS ]] ≤ 1− ε/2.
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Before proving this, we need to introduce some random variables regarding the outcomes of the
games. Let S = {n − k + 1, n − k, . . . , n} without loss of generality be the won indices. Let the
answers to these won games be A = An k+1 . . . An and B = B ectiv− n .−k+1 . . Bn resp ely. We also
define the following random variables

• Ti represents a uniformly random question for each i = 1, 2, 3 . . . , n− k and Ui the opposite
question i.e. (Ti, Ui) is chosen from {(Xi, Yi), (Yi, Xi)} with uniform probability.

• Q = Xn−k+1Yn−k+1Xn Y . . .X Y represents the won questions.−k+2 n−k+2 n n

• Let R = QT1T2 . . . Tn k represent the won questions and a random question from each of the−
remaining question pairs.

• Let R−j = QT1T2 . . . Tj 1Tj+1 . . . Tn represent R but with the j’th coordinate removed.−

The previous lemma then can be reduced to the following

Lemma 2.13. Suppose h is a positive integer such that

2 )

• P[WS ≥ 2−
ε (n−k

] 2 +h
34

• For every r, | supp(A|R = r ∧WS)| ≤ 2h

Then Ei6∈S [P[Wi|WS ]] ≤ 1− ε/2.

Proof of Lemma 2.12. If G is such that the answers are of length c we have that the support of
the distribution of the answers for a particular questions is bounded by 2c. Since A consists of k
questions we have that its support is bounded by 2kc. The lemma then follows by applying h = kc
in Lemma 2.13. �

Proof of Lemma 2.13. Before deferring to the proof, let us outline the strategy that will be used.
We first observe how to go from a strategy for Gn to a strategy for G given WS . Given questions X
and Y they can select an index i such that (Xi, Yi) = (X,Y ) and they generate (Xk, Yk) for k = i
via shared randomness. They can then run the strategy for Gn

6
to win index i. In order for this to

be meaningful at all, we would like their sampling to be statistically close to XnY n|WS where all
the questions are generated randomly. If the distance to this distribution was ε/2, this immediately
implies the lemma since otherwise then they can win the i’th coordinate with probability greater
than 1 − ε/2 − ε/2 = 1 − ε. We will observe what happens for the average i ∈/ S. Alice and Bob
will sample first sample the two random variables A,R−i (Alice’s answers to the won questions
along with the won questions and a question from each of the remaining pairs except i). This is
useful since it tells us that (Xn, Y n|(X i n n i

i, R
− , A) ∧WS) and (X ,Y |(Yi, R− , A) ∧WS) are both

product distributions i.e. Xn and Y n are independent given those conditions since they fix at least
one of (Xk, Yk) for each k. As a result, they can generate the remaining questions independently
and obtain a distribution close to XnY n|WS . One critical step to note is that Alice and Bob must
obtain equal samples AR−i with high probability and we will need to refer to the following claim
to do so.
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Claim 2.14. There exists a protocol for l non-communicating players such that given distributions
A1, . . . , Al taking values in A such that ∆(Al, Ai) ≤ εi for all i ∈ [l], the players can use shared
randomness to sample B1, . . . , Bl with the following properties:

• For every i, Bi has the same distribution as Ai.

• l 1The probability that the samples are inconsistent is bounded above by 2 i
−
=1 εi.

We will see an example of such a protocol in the section on projection games.

∑
We will use this to

allow the players to obtain samples AR−i|WS and show they are statistically close to the desired
samples. This idea to use shared randomness to generate the questions is referred to as correlated

ε
sampling. For convenience all the following references to Di ≈ Fi will now refer to the expected
value of the distance over i S i.e. Ei , F6∈S∆(Di i) ε. Now we

̂
6∈ ≤ will develop some claims involving

the proximity of the given distributions to the desired ones.

ε/34
Claim 2.15. XiYi|WS ≈̂ XiYi

Proof. Direct application of Lemma 2.10.

ε/̂17
Claim 2.16. AR−iYiXi|WS ≈ (AR−iYi|WS)⊗ (Xi|Yi)

ε/
Proof. Apply Corollary 2.11 to get ARUi|WS

3̂4
≈ (AR|WS)⊗ (Ui|R) = (AR|WS)⊗ (Ui|Ti). Condi-

tioning on (Ti, Ui) = (Yi, Xi) and applying Proposition 2.4 we arrive at the claim.

4̂ε/34 4̂ε/34
Claim 2.17. (XiYi)⊗ (AR−i|XiWS) ≈ (XiYi)⊗ (AR−i|XiYiWS) ≈ (XiYi)⊗ (AR−i|YiWS)

Proof. We repeatedly apply Claims 2.15 and 2.16 and make necessary rearrangements.

ε/34
(X Yi)⊗ (AR−ii |YiX i

iWS) ≈̂ (XiYi|WS)⊗ (AR− |YiXiWS)

= AR−iXiYi|WS

ε/̂17
≈ (AR−iYi|WS)⊗ (Xi|Yi)

= (Xi|Yi)⊗ (Yi|WS)⊗ (AR−i|YiWS)

ε/̂34
≈ (Xi|Yi)⊗ (Yi)⊗ (AR−i|YiWS)

= (XiYi)⊗ (AR−i|YiWS)

The other equality follows from a symmetric argument except conditioning on (Ti, Ui) = (Xi, Yi).

By running the protocol from Claim 2.14, we have that in expectation over i 6∈ S the probability
the three random variables of Claim 6.3 are inconsistent is bounded by 2(4ε/34)+2(4ε/34) = 16ε/34.
This implies that the distribution of AR−i for each player is 16ε/34 close to the distribution of AR−i
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conditioning on their joint distribution. We now just need one more application of Claim 2.15 to
get rid of this dependence

Ei6∈S∆((XiYi)⊗ (AR−i|X i
iYiWS), XiYiAR

− |WS)

= E ∆((X Y )⊗ (AR−i|X Y W ), (X Y |W )⊗ (AR−ii6∈S i i i i S i i S |XiYiWS))

≤ Ei S∆(XiYi, XiYi|W )6∈ S

≤ ε/34

Therefore on average, Alice and Bob are sampling from a distribution that is 17ε/34 = ε/2 close to
the correct one, where our random variables are only conditioned on WS . As we mentioned before,
they can generate questions independently but now we know the distribution of the questions they
get is statistically close to XnY n|WS . In particular we get the following result from the bound on
G’s value

1− ε ≥ Ei S [Pr[W W6∈ i| S ]]− ε/2
which immediately implies the lemma. �

We now conclude with the proof of the Parallel Repetition Theorem.

Proof of Theorem 1.3. We introduce explicit constants, showing that the value of the repeated

game is bounded by (1− ε/2)t where t = ε2n
352+342c

which satisfies εt ≤ ε2(n−t)
342

− tc. Suppose for the

sake of contradiction that val(Gn) > (1− ε/2)t and that k is the smallest number such that every
H ⊂ [n] of size k+ 1 satisfies Pr[WH ] > (1− ε/2)k+1. This implies the existence of a set S ⊂ [n] of
size k such that Pr[W k

S ] ≤ (1− ε/2) . We thus have for ε ∈ [0, 1] and k < t

2ε (n−t)
Pr[WS ] ≥ (1− ε/2)t ≥ 2−εt ≥ 2− 342

+tc ≥ 2−
ε2(n−t)

2 +kc
34

Applying Lemma 2.12 shows that there exists some i such that Pr[Wi|WS ] ≤ (1 − ε/2) but then
Pr[W k+1

S ]∪{i} ≤ (1− ε/2) , contradicting our assumption about H. �

3 Projection Games

3.1 Projection Operators

In the analysis of parallel repetition on projection games, we will assume the bipartite graph
interpretation of a game G = (V1, V2, E,V). It may also help to extend the graphs so that the
vertex includes an answer parameter i.e. Alice’s set is (X,α) and Bob’s is (Y, β) such that (X,α)
is connected to (Y, β) iff X ∈ V1, Y ∈ V2, (X,Y ) ∈ E and (α, β) ∈ VX,Y . The definition of a
projection game then says that for each constraint VX,Y and β there is at most one α such that
(α, β) ∈ VX,Y . Alice can assign each vertex a value g(u, α) such that α g(u, α) = 11, so that
g(u, α) represents the probability of producing answer α given u. We define

∑
f(v, β) similarly for

Bob.

The space of g and f each can be associated with an inner product

〈g, g′〉 = E
∑

g(u, α)g′(u, α) 〈f, f ′
u

α

〉 = E
v

∑
f(v, β)f ′(v, β)

β

1This isn’t necessary but it conveniently gets rid of normalization factors
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These can be interpreted as a measure of the overlap of two assignments averaged over the vertices.
We also use the standard definition of norm, ‖f‖ = 〈f, f〉1/2. For a projection game, we will use
the notation β ∼ α to represent the set of β incident to α for constraintV V while v ∼ u represents
the v incident to u in E. The game can then be identified by the following linear operator where
V = Vu,v

Gf(u, α) = E f
v∼u

β

∑
(v, β)

V∼α

This is essentially finding the expected value over the Alice’s vertices of Bob’s assignments which
project to it. A closer look tells us that the value of a strategy is given by

〈g,Gf〉 = E
∑

g(u, α)f(v, β)
(u,v)

α,βV ∼α

So finding the value of a projection game is equivalent to maximizing 〈g,Gf〉 over f and g. We
can extend the operator to the simultaneous play of two projection games G and H over V and V ′

respectively, denoted by G⊗H.

(G⊗H)f(u, u′, α, α′) =
v
E f(v, v′, β, β′)

v
∼u
′∼u′ βV∼α

β′V

∑
′∼α′

3.2 Collision Value and Symmetrized Games

We now observe a related quantity, ‖Gf‖2 the square of the collision value of an assignment
f . From our definition of the norm, we see that ‖Gf‖2 represents the probability over u that two
randomly selected labels from randomly selected vertices v, v′ incident to u project to some common
α i.e. collide. We define the collision value of a game G to be ‖G‖ = maxf ‖Gf‖.

Claim 3.1. val(G) ≤ ‖G‖ ≤ val(G)1/2

Proof. A simple application of Cauchy-Schwarz assuming f and g attain val(G) shows val(G) =
〈g,Gf〉 ≤ ‖g‖ · ‖Gf‖ ≤ ‖Gf‖ ≤ ‖G‖. Let f now be such that ‖G

2
‖2 then the other inequality

follows from ‖G‖ = 〈Gf,Gf〉 ≤ maxg〈g,Gf〉 ≤ val(G).

We shall now show that there is a game whose value is equal to ‖Gf‖2 and the vertex sets
are both equal to V in what we call the symmetrized constraint graph Gsym. (v, v′) ∈ V × V
are connected by an edge if they are both incident to some vertex u under constraints V and V ′
respectively. If originally the edges are chosen according to distribution µ, we define the distribution
µsym for the edges in Gsym by µsym(v, v′) = u µ(u, v)µ(u, v′). The constraint on (v, v′) is the set
of pairs (β, β′) such that there exists some α
whenever the β answer pair collide to a projected

∑
such that βV , βV

′
′ ∼ α. Thus we win in this game

α of some incident vertex u in the original graph.
This form is convenient as eliminates Alice from the analysis. It also tells us that if we give each
vertex v ∈ V in Gsym an assignment β with probability f(v, β) then the value of this assignment
(collision probability) is ‖Gf‖2. This view also implies the following since the collision value is also
a game value.

Claim 3.2. ‖G⊗H‖ ≤ ‖G‖
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3.3 Trivial Games

We briefly define the following basic projection operators which will have interesting
when we consider them in repetition with other games. We define Tf(v, α) to be equal
when α = 1 and 0 otherwise. We also define Tvf(v′, α) = Tf(v, α) for all v′ ∈ V which
restricts Bob’s vertex set to v . This gives us a lot of freedom in the assignment for

∑behavior

β f(v, β)
essentially

{ } f without
altering Tv’s value so it has a stationary role when played parallel to another projection game.

3.4 Proof Overview

Dinur and Steurer’s bound, Theorem 1.6, reduces to the following

Theorem 3.3. Any two projection games G and H satisfy√ ‖G
2

⊗H‖2 ≤ ϕ(‖G‖2) · ‖H‖2, where

ϕ(x) = x ,1+x

The reduction is easy to see by Claim 3.1 and applying the above repeatedly. We will now observe
the nature of such a multiplicative parameter i.e. ρG such that for every projection game H

‖G⊗H‖ ≤ ρG · ‖H‖

It is easy to note that the minimum value of ρG is

ρG = sup
‖G⊗H‖

H ‖H‖

which is essentially the negative value factor associated with playing G in parallel with any pro-
jection game. The naive repetition tells us ρG ≥ ‖G‖ but we are interested in whether ρG ≈ ‖G‖.
This is shown via a relaxed value parameter val+(G) ≥ ρG such that val+(G) ≈ ‖G‖. We let f
be an optimal assignment for G ⊗H and “factor” (G ⊗H)f = (G ⊗ I)(I ⊗H)f = (G ⊗ I)h and
(Tv ⊗ H)f = (Tv ⊗ I)(I ⊗ H)f = (Tv ⊗ I)h where I is the identity operator on the appropriate
space We define the relaxed value as follows.

G
val+(G) =

‖(
max

⊗ IΩ)h‖
h≥0 maxv ‖(Tv ⊗ IΩ)h‖

We can assume that h operates on V × Σ × Ω, where Σ is the answer set, for some space Ω since
G operates on the first component but H is undetermined so its measure space is arbitrary and
hence the subscripts under the identity operator. It follows from Claim 3.2 that val+(G) ≥ ρG.
val+(G) actually turns out to be multiplicative as opposed to val(G) and this together with Claim
3.1 reduces Theorem 3.3 to the contrapositive of the following.

Theorem 3.4. Let G be a game with val+(G)2 > ρ, then

val(G) ≥ ‖G‖2 1−≥
√

1− ρ2

1 +
√

1− ρ2

We assume the existence of a non-negative function f : (V ×Σ×Ω)→ R such that ‖(G⊗ I)f‖2 >
ρmaxv ‖(Tv⊗I)f‖2. Furthermore the inequality lets us rescale so that g ≤ 1 and maxv ‖(Tv⊗I)g‖ =
1 where the latter is justified since adjusting the measure equally affects both sides. The proof is
broken into three parts which simplify the existing assignment, increasing the contribution from G
while Tv’s remains the same (or decreases).
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1. Convert f into a deterministic assignment, where for each ω, v, fv,ω(β) = f(v, β, ω) assigns
at most one β a positive value. This is easily done through an expectation argument on a
sampling of deterministic assignments to simulate the randomized assignment and the result
is an increase in the value of val+(G)2.

2. Convert f into a partial assignment, where the values are either 0 or 1. The result is an
assignment and a new space Ω′ such that ‖(G ⊗ IΩ′)f‖2 > ψ(ρ) = 1 − (1 − ρ2)1/2. This
uses randomized rounding and a type of Cheeger’s inequality from spectral graph theory
applied on projection games. This serves to find a set of partial assignments fω so that in
the Symmetrized Games, we are guaranteed many collisions and hence increasing the value
of the game, proportional to ψ(ρ). Not surprisingly, the analysis becomes much more simpler
when we consider expanders over general graphs. In the case of Gsym being an expander, f
ends up only needing to take a single assignment per ω ∈ Ω i.e. it is essentially of the form
f(v, β) where for each v there is a unique β assignment. Intuitively this works since expanders
are highly connected and sparse, so a single assignment already allows for a nice number of
collisions. However this is not true in the general case since G could be made from multiple
disjoint expander-like graphs and so we may need to make multiple assignments.

1 γ3. The last step is to combine the partial results fω into an assignment for G with value −
1+γ

where 1− γ = ψ(ρ). The idea is related to the notion of correlated sampling, which we recall
uses shared randomness to independently instantiate random variables. In the Holenstein’s
simplification, Alice and Bob use it to guarantee a statistically close to optimal question dis-
tribution so that they can run the Gn strategy to obtain a good strategy for G, exploiting the
fact that Pr[Wi|S] is decent for some i and that sampling AR−i gets us a product distribution.
In this context, we started out with a lower bound on the relaxed value val+(G)2 > ρ and
are now using it to find a good jointly-distributed assignments Xv for val(G). We will sample
from Ω′v = {ω ∈ Ω′|fω′ (v, β) > 0} for a unique β. To be more precise, we can sample Xv as
follows: randomly permute Ω′ and sample ω until we arrive at a fω such that there exists
some unique β such that fω(v, β) = 1 and assign v the answer β. Each player does, this ob-
taining a shared assignment for f in the symmetrized game. We now just have to bound the
probability of success i.e. when (Xv1 , Xv2) satisfies the symmetrized constraint W = Vsym.
We lower bound this probability by also requiring R(v1) = R(v2) where R(v) is the number
of times we have to sample until v gets assigned a label. The probability of this event over
X is equivalent to the probability over ω that the constraint is satisfied conditioned on v1 or
v2 receiving a label from fω since that would imply that fω gave the proper assignment for
both v1 and v2 resulting in R(v1) = R(v2). In other words we let xω,v be the value Xv takes
on the partial assignment fω where we sample ω ∼ Ω′ and we get the following

Pr[W(Xv1 , Xv2) = 1] ≥ Pr[W(Xv1 , Xv2) = 1 ∧R(v1) = R(v2)]
X X

= Pr[W(xω,v1 , xω,v2) = 1|fω(v1, xω,v1)
ω

∨ fω(v2, xω,v2)]

Prω[
=

W(xω,v1 , xω,v2) = 1 ∧ (fω(v1, xω,v1) ∨ fω(v2, xω,v2))]

Prω[fω(v1, xω,v1) ∨ fω(v2, xω,v2)]

Eω[W(xω,v1 , xω,v2) min(fω(v1, xω,v1), fω(v2, xω,v2))]
=

Eω[max(fω(v1, xω,v1), fω(v2, xω,v2))]

12



The remainder of the analysis is omitted but follows from a lemma regarding random variables
which we mention below.

Lemma 3.5. LetA,B,Z be jointly-distributed random variables such thatA,B are nonnegative-
E · ≥ 1−γvalued and Z is 0/1-valued. Then, Z minA,B (1+γ )Emax{A,B} as long as EZ ·

min{A,B} ≥ (1− γ′)E 1(A+B).2

4 Closing Remarks

4.1 Statistical vs. Graphical Approach

Rao also developed a result for projection games by fine tuning Holenstein’s simplification,
εn

specifically the value is bounded by (1− ε/2) 26·(68) which actually removes the dependence on the
answer length and this follows from focusing on the number of answers which are used frequently
which he calls heavy. This is analogous to the idea of collision value which Dinur and Steurer
introduce which isn’t too surprising since projection games imply many answers α project onto a
low number of β answers. However Raz’s result falters when the number of repetitions is small
e.g. k � 1 , and turns out to be weaker than the trivial bound 1ε − ε while Dinur and Steurer’s
is tight. Does this imply the statistical approach is insignificant compared to the spectral graph
theory approach? It is hard to say since the former is much easier to follow while the latter
formalizes the notion of projection games quite nicely but it does not seem like it can be extended
to general games. The statistical distribution approach allows for a bit of freedom in approximating
the distributions involved in the games while Dinur and Steurer’s analysis is very careful since we
consider all finite sized measure spaces to find a good bound for ρG. The latter also focuses on
the relationship between two arbitrary projection games in parallel rather than focusing on Gn

and also relied on the trivial game Tv as a basis for amplification. In the end both rely on some
modification game values, conditioning the distributions in the case of Holenstein, and the relaxed
value val+ in the case of Dinur and Steurer and so a correlated sampling was necessary to generate
a good assignment for the original game. One may be able to take some definitions from Dinur
and Steurer, for example the notion of a symmetrized game, and combine it with the statistical
analysis of Rao to close the gap between the results.

4.2 Strong Parallel Repetition

For a while, researchers were wondering if parallel repetition can be strengthened further to
(1 − ε)Ω(n/c) where c is the answer length. However this turns out not to be true as Raz provides
a counterexample through an odd-cycle XOR game[7]. The game involves a cycle of odd length
m ≥ 3 that the players are trying to show is 2-colorable. The referee asks each player the color of
a common vertex with probability 1 , accepting if their answers match, and adjacent vertices with2
probability 1 , accepting if their answers differ. The value of a single game is 12 − 1/2m and Raz
shows the repeated game has value 1− (1/m) ·O(

√
n). Dinur and Steurer show this bound is tight

for projection games with few repetitions using their result. Raz uses a statistical approach similar
to Holenstein/Rao and bounds the statistical distance between carefully selected edge distribution,
one for each vertex. After he develops the closeness of these distributions, each player generates
one based on their received vertices and use correlated sampling to show that the edge sets are
the same and hence get a desired distribution on the vertex values. The fact that the statistical
approach here gives the tightness to Dinur and Steurer’s result via analytical methods is fairly
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interesting and suggests that such an approach may be able to be improved or generalized to give
stronger parallel repetition results.

4.3 Open Problems

We have only touched the surface of parallel repetition but many generalizations are currently
being worked on by many researchers in complexity theory. Two of the major ones include when
the players are entangled (Quantum Parallel Repetition) and when there are more than 2 players
(Multiplayer parallel repetition), both of which are open. Recent studies have shown that certain
multi-player and quantum games classified as anchoring games satisfy some form of the parallel
repetition theorem[1]. In addition there exists anchoring transformations which take a game G to
an anchored game G . These transformations also rely on the graphical representation of games by⊥
adding anchored vertices and edges, and if any anchored edge is selected the game is automatically
won. As a result the the winning probability is slightly amplified for a single game but still obeys
exponential decay as the number of repeated games increase since ⊥ disrupts Alice’s and Bob’s to
use one round’s results to influence another, the core to the general proof of parallel repetition.
Extending parallel repetition to specific types of games allow us to extend its applications, most of
which with deal with hardness of proof protocols. Researches are constantly reinventing the wheel,
adding interesting features to these protocols but it is not certain whether parallel repetition is
likely to hold or not on these protocols, and we may need more general techniques to find out.
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