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Abstract. It is possible to define ∀ and ∃ operators which operate on complex-
ity classes to produce new definitions of complexity classes; this is one way to
define the classes in the polynomial hierarchy. In this survey, I investigate what
new complexity class operators I can define beyond the ones we discussed in
6.841. I define a complexity class HP using the Henkin quantifier H , and dis-
cuss my original analysis of its properties.

1 Introduction

It is possible to extend the definitions of the operators ∃ and ∀ in order to define
operations on complexity classes. For any complexity class C, we can define ∃C
and ∀C as follows: [3]
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∃C ≡ {L | ∃V : Turing machine, such that L(V ) ∈C and

L = {x | ∃w1. V (w1, x) accepts}.}

∀C ≡ {L | ∃V : Turing machine, such that L(V ) ∈C and

L = {x | ∀w1. V (w1, x) accepts}.}

In these definitions, require that w1 be a string whose length is at most
polynomial in |x|. Then, for example, NP = ∃P: for every language in NP,
there exists a verifier V such that for some polynomial-length witness string
w1, V (w1, x) accepts. Similarly, coNP=∀P.

Other operators can be defined over complexity classes, including the oper-
ators BP and ⊕. All four of these operators were developed during 6.841 as we
discussed Toda’s Theorem. Conveniently, BPP is equivalent to BPP. [3]

BPC ≡ {L | ∃M : Turing machine, such that L(M) ∈C and

Pr [M(w1, x) accepts
w1

⇔ x ∈ L] ≥ 2/3.}

⊕C ≡ {L | ∃M : Turing machine, such that L(M) ∈C and

L = {x | there are an odd number of w1s such that M(w1, x) accepts}.}

All of these operators are interesting because they allow concise definitions
of NP, coNP, and BPP in terms of operators applied to P. These operators
also permit us to define each of the classes in the polynomial hierarchy in terms
of ∃ and ∀: [3]

PΣ1 = ∃P
PΠ1 = ∀P
PΣ2
P

= ∃∀P
Π2 = ∀∃P

PΣ3 = ∃∀∃P
. . .

These operators are a fascinating abstraction, as they make it easier to de-
fine complicated complexity classes and intuit their relationships to other classes.
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Indeed, on the way to proving Toda’s Theorem we used these quantifiers in or-
der to prove that PH⊆BP⊕P! [3]

The results of descriptive complexity theory make these relationships even
more fascinating. This is a field seeking to characterize complexity classes ac-
cording to which logical formalisms are sufficient to express each class’s lan-
guages; beyond NP and coNP, descriptive complexity has characterized NL,
PSPACE, EXPTIME, and others in terms of first-order or second-order logic
with and without certain extra operators. [8] Descriptive complexity is also an
interesting object of study because it does not require us to define a model of
computation such as Turing machines; instead, the logics themselves fulfill this
role.

Logical quantifiers therefore seem like a fruitful way to define new abstrac-
tions for complexity classes. The purpose of this survey will be to investigate
what new complexity classes can be defined using operators based on as-yet-
uninvestigated logical quantifiers. We will consider some candidate logical quan-
tifiers; I will focus on discussing branching quantifiers and the complexity classes
that they permit, and will analyze some of the properties of those complexity
classes.

2 More operators

Here are the results of my attempts to construct new operators for complexity
classes.

2.1 co

Definition 2.1. The co in such classes as coNP can itself be thought of as an op-
erator that acts on complexity classes. The following operator definition cap-
tures the relationship between classes and co-classes more generally:

coC ≡ {L | L ∈C}

The relationships of classes to their co-classes is in general extremely well-
characterized; the primary interesting behavior of co as an operator is that it
may be nested or rearranged among collections of other operators. For exam-
ple, a parallel version of De Morgan’s Laws holds for co, ∃, and ∀:
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Definition 2.2 (De Morgan’s Laws).

¬∀x.φ(x) =∃x.¬φ(x)

¬∃x.φ(x) =∀x.¬φ(x)

Theorem 2.1.
co∀C=∃coC
co∃C=∀coC

Proof. Simply unpack the definitions of ∃, ∀, and co, then apply De Morgan’s
Laws inside the definitions. For example, any language L of strings x such that
there does not exist a witness w such that V (w, x) accepts is also a language L
of strings x such that for every w , V (w, x) does not accept.

2.2 ∃!
I encountered the ∃! operator while searching for unusual logical quantifiers.
This is the “there exists only one" quantifier. We can use it to define a complex-
ity class operator in the same way we did with ∃:

Definition 2.3.

∃!C ≡ {L | ∃V : Turing machine, such that L(V ) ∈C and

L = {x | ∃!w1. V (w1, x) accepts}.}

We discussed UniqueSAT in 6.841 when covering the Valiant-Vazirani theo-
rem; naturally, UniqueSAT is the complete problem for ∃!P. [3] ∃!P happens
to be a class that has already been defined and characterized: it is the same as
the complexity class US. [4] [6]

Finally, I’ll mention a theorem about ∃!P: ∃!P is contained within ∃∀P.

Theorem 2.2.
∃!P⊆∃∀P

Proof. Every predicate ∃!x.φ(x) can be rewritten as an equivalent predicate of
the form ∃x.∀y.ψ(x, y) as follows. Note that ⇒ and 6= can be defined as boolean
operations. [1]
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∃!x.φ(x) = ∃x. x is the unique solution to φ

∃x.φ(x) holds, and no other y (y 6= x) satisfies φ

∃x.∀y.φ(x)∧ ((y 6= x) ⇒¬φ(y))

2.3 H

The Henkin quantifier H is an example of a branching quantifier, a class of
logical quantifiers in which the choice of variables along different branches is
forced to be independent. H is defined as follows: [10] [9]

Definition 2.4 (Henkin quantifier). [7]

H(u, v, w, x).φ(u, v, w, x) ≡
(∀u ∃v

)
φ(u, v, w, x)∀w ∃x

This matrix of quantifiers behaves like ∀u. ∃v. ∀w. ∃x. φ(u, v, w, x), except
for one crucial detail: the values of u and v must be chosen independently of
the values of w and x. Curiously, this quantifier cannot be expressed using first-
order logic. It can, however, be expressed in second-order logic; we discuss this
later. [7]

Inspired by this, I define an operator H for complexity classes. Note that the
witness strings w1 . . . w4 must all be polynomial in length:

HC ≡ {L | ∃V :(Turing mac)hine, such that L(V ) ∈C and

L = {x
∀w| 1 ∃w2 V (w∀w ∃w 1, w2, w3, w4, x) accepts}.}

3 4

2.3.1 Intuition: a complete problem for HP

For more intuition about H , let’s try to figure out a complete problem for HP,
something that is to HP like SAT is to NP.

First, a reminder about the complete problems for classes such as ∃P and
∃∀∃P. For ∃P, SAT is a complete problem: the ability to decide for some x
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whether there exists some witness w such that polynomial-time V (w, x) ac-
cepts (or, equivalently, such that some polynomially-sized circuit φ(w, x) eval-
uates to 1) is a problem that every language in ∃P can be reduced to.

∃

φ(w1, x) = 0 φ(w2, x) = 0 φ(w3, x) = 0 φ(w4, x) = 0

Figure 1: SAT as a one-level game tree. This one evaluates to 0.

For ∃∀P, we instead need to decide for some x whether there exists w1 such
that for all w2, V (w1, w2, x) accepts – this is the complete problem for ∃∀P. To
make it a little less contrived, imagine a game tree of two layers: first the ∃player
chooses a move, then the ∀ player. At the end of the tree is a bit determining
who has won, the ∃ player (if the bit is a 1) or the ∀ player (if the bit is a 0).
Thus, the complete problem for ∃∀P is the problem of deciding whether any
perfectly-played general game tree of depth two results in a win for ∃ or a win
for ∀. If you can decide this problem in polynomial time, you can decide any
problem in ∃∀P in polynomial time.

∃

∀

1 1 1

∀

0 0 1

∀

0 0 0

Figure 2: ∃∀P problems reduce to the problem of finding the winner in a two-
level game tree. ∃ can win this one by choosing the leftmost branch. At each
point, the players are outputting a polynomially-long string, so they have expo-
nentially many choices.

This intuition applies to the rest of the polynomial hierarchy: ∀∃∀P prob-
lems can be reduced to game trees of depth three where the ∀ player goes first
instead of the ∃ player; ∃∀∃∀∃P problems can be reduced to game trees of
depth five where the ∃ player goes first; and so on.
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Back to HP. What is the corresponding HP-complete game? With the H
quantifier, we have two game trees playing out in parallel – (∀w1 ∃w2∀w3 ∃w ). Imagine

4

that the two games happen in separate rooms, Room 1 and Room 2, each with
its own ∀ player and ∃ player.

In the traditional ∀∃∀-style game trees, the results of the game are stored as
1s and 0s in each of the leaves of the tree. Here, the result of the game will in-
stead be a function of which leaf each game tree ends up with. Perhaps instead
of placing 1s and 0s onto leaves, we place the 1s and 0s into a 2×2 matrix; the
result of the game in Room 1 goes towards choosing a row of the matrix, and
the result of the game in Room 2 goes towards choosing a column of the matrix.
The values in the matrix are all determined by the choice ofφ(w1, w2, w3, w4, x)
that the game is being played over.

∀1

∃1

row 1 row 2

∃1

row 3 row 4

∀2

∃2

col 1 col 2

∃2

col 3 col 4

φ→
0 1 1 0
1 0 1 1
1 1 1 0
0 0 1 1

Figure 3: The four-player game for HP. Two game trees played separately, with
the result of the overall game scored by the combined results of the two parallel
games. This one is a guaranteed win for 1 (players ∃1 and ∃2).

The ∀ players are on the same team, trying to get the outcome of the game
to be a 0; the ∃ players are similarly on the same team, trying to get the outcome
of the game to be a 1. The players in separate rooms make their moves in turn,
and then the final result of the game is calculated on the matrix. Like before,
the players are choosing polynomially-long strings, so they have exponentially
many moves to evaluate.
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Thus, any problem in HP can reduce to the problem of determining, given
some φ, whether the game setup as described above necessarily evaluates to
a win for 0 or a win for 1. Let’s call this game HSAT. Since any language in
HP can be reduced to HSAT, HSAT is HP-hard; since HSAT ∈HP, HSAT is HP-
complete.

Definition 2.5 (HSAT). HSAT is a complete problem for HP, as described above.

2.3.2 Guaranteed winners?

We’re not done yet: in order to treat this HSAT setup as a game, we have to check
that it satisfies a certain property. One of the nice things about ∀−∃ game trees
is that they have a guaranteed winner. If the ∃ player is not guaranteed to win,
then there exists a strategy by which the ∀ player can play such that no matter
what the ∃ player does, the ∀ player will win. Vice versa, if the ∀ player is not
guaranteed to win, then the ∃ player has a guaranteed winning strategy. [2]

Definition 2.6 (Guaranteed winner property).

¬∃ strategyp0. ∀ strategyp1. p0 wins ↔ ∃ strategyp1. ∀ strategyp0. p1 wins

We would prefer that HSAT games also have the guaranteed winner prop-
erty, because if they do not, then we do not in all cases have a clear definition
of which player is the unique winner of an HSAT game, and thus do not have a
clear definition of whether the value of the game is 0 or 1.

In fact, I have found a counterexample that demonstrates that HSAT does
not have this property. Consider the game below.
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∀1

∃1

row 1

∃1

row 2

∀2

∃2

col 1 col 2

φ→ 0 1
1 0

Figure 4: The ∀ players do not have a guaranteed win for this game: no matter
what∀1 picks, there’s a strategy for ∃2 that defeats it. However, the ∃ players also
do not have a guaranteed win for this game. No matter what ∃2 picks, there’s a
strategy for ∀1 that defeats it.

Fortunately, if there is a way to interpret the logical formula H(. . .)φ(. . .) as
being true or false for every φ, then we can use that interpretation to define a
unique winner of the HSAT game. I found an elaboration on the definition of H
which clarifies this issue, stating that the Henkin quantifier is equivalent to the
following: [5]

(∀x1 ∃y1 , y∀x ∃y

)
φ(x1, x2 1, y2) ≡ ∃ f . ∃g . ∀x1. ∀x2.φ(x1, x2, f (x1), g (x2))

2 2

This is a skolemization: it expresses H in second-order logic. Second-order
logic allows us to quantify over functions instead of just values. Instead of hav-
ing the ∃ players choose their y1 and y2, this definition has the ∃ players choose
their strategies f and g in advance, as functions. Note that f only depends on
x1 and g only depends on x2, so the two branches of the logic are independent
of each other.

Thus, if there is no guaranteed-win for the∀players and also no guaranteed-
win for the ∃ players, then we resolve the game in favor of the ∀ player. The
HSAT game only has a value of 1 if the ∃ players have some strategy by which
they can achieve a guaranteed win. Even though HSAT games don’t have the
guaranteed winner property, we now know how to define a winner for every
game.
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2.3.3 Known results

I could not find any prior results that deal with the same complexity class HP as
defined above, via intentionally deriving a definition from H . Nor could I find
any complexity classes which are unintentionally equivalent; I hunted through
the literature on two-prover systems to double-check. However, I did find some
results that investigate the complexity of queries which use the Henkin quanti-
fier H , just not in exactly the way I’m interested in. [9]

One result is as follows: we prove that a weaker variant of H defines a com-
plexity class that, though weaker, contains the class NP. [7]

Definition 2.7 (WEAK-HSAT). Call WEAK-HSAT the problem of deciding whether
(∀x1 ∃a

x )φ(x , x ,u, v) is satisfiable for a givenφ, where x and x may be polynomially-∀ 2 ∃b 1 2 1 2

long strings, but where a and b must have length O(1).

Theorem 2.3. WEAK-HSAT is NP-hard.

Proof. The proof is by reduction from 3COLORING, a known NP-hard prob-
lem, to WEAK-HSAT.

For any instance G of a graph that we wish to decide the 3-colorability of, let
V be the vertices in G , and let E(x, y) be a binary relationship which is true if x
and y share an edge, or false otherwise. Let C be the set {0,1,2}, denoting three
colors.

Then, (∀x1 V a φx
∈ ∃

b ) (x1, x2, a,b) is true if and only if the graph G is 3-colorable,∀ 2 ∃
for the following φ:

φ= ((x1 = x2) ⇒ (a = b))∧ (E(x1, x2) ⇒ (a 6= b))

Note that x1 and x2 are vertex labels chosen from V , and a and b are col-
ors chosen from C ; thus, the truth of this formula can be computed by WEAK-
HSAT.

The first clause of φ requires that for any two vertex labels which are iden-
tical, the two branches of logic must have independently decided on the same
colors a and b, thus must color all of the nodes consistently. The second clause
of φ requires that if the vertices x1 and x2 share an edge, then the two branches
of logic must have independently decided on two different colors a and b. Over-
all, there exists a strategy which the ∃players can use to satisfactorily choose the
colors a and b iff the graph is 3-colorable.
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2.3.4 Results for HP

Here are the results of my investigations of HP.

Classes in HP. HP can decide any decision problem in ∀∃P simply by ig-
noring one of its game branches (more formal proof below). Open problem:
whether any more powerful classes in the polynomial hierarchy are also con-
tained within HP.

Theorem 2.4.
∀∃P⊆HP

Proof. To reduce any language L ∈ ∀∃P to HSAT, I provide the following ma-
chine that decides L given a polytime HSAT decider. On input x,

1. Using the reduction from L to the complete problem for ∀∃P, convert x
to some formula ∀w1∃w2φ(w1, w2) that is true iff x ∈ L.

2. For the reduction, our putative HSAT solver takes in an input formula
ψ(z1, z2, z3, z4) over four variables, and accepts iff (∀z1 ∃z2 ψ∀z3 ∃z ) (z1, z2, z3, z4).

4

3. Feed φ(w1, w2,unused,unused) to this solver as input. This is a formula
that ignores the variables z3 and z4; its truth is only determined by the
values of z1 and z2. Intuitively, we have our two-team HSAT game, but
only one team is playing; the other team’s moves don’t matter. (It is as if
each row is all 1s or all 0s, such that the selection of column doesn’t affect
the outcome.)

4. Accept iff the HSAT solver accepts.

Classes containing HP. It is not obvious whether HP ⊆ ∀∃∀∃P. One might
be tempted to trivially reduce an HSAT game to a ∀∃∀∃ game tree, but the anal-
ysis of a ∀∃∀∃ game tree might not necessarily match the outcome of the HSAT
game: because the players have information about past moves during their two
later moves, the outcomes may be different.

It is also not immediately obvious whether HP⊆PSPACE. In order to eval-
uate the HSAT game for some inputφ, we can evaluate the skolemized formula:
∃ f . ∃g . ∀x1. ∀x2. φ(x1, x2, f (x1), g (x2)). A naïve approach would be to evaluate
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every possible strategy f and g that the ∃ players could come up with. How-
ever, this doesn’t work: f and g are functions from polynomial-length strings
to polynomial-length strings; merely writing down the truth table of one of
these functions requires exponentially many bits of space. In order to show
that HP ⊆ PSPACE, we would need a cleverer approach, one that only uses
polynomially many bits of space. I could not come up with an approach for
PSPACE that provably decides the HSAT game correctly.

However, EXPSPACE clearly contains HP.

Theorem 2.5.
HP⊆EXPSPACE

Proof. We prove this by showing that the result of any HSAT game can be de-
cided in EXPSPACE. The input to a HSAT decision problem is some formula
φ.

Exponential space is sufficient to allow us to keep track of one candidate
tuple ( f , g , x1, x2) at a time, and to increment up in order to search the entire
space of candidates. We iterate over all of the candidates, searching for a can-
didate f and g such that for all choices of x1 and x2, φ( f , g , x1, x2) is true.

Open problem: whether HP can be shown to be contained within any smaller
complexity classes.

2.4 Other branching quantifiers

H is merely the tip of an iceberg: there are a rich array of branching quantifiers
that can be defined. We can imagine quantifiers like H with more branches

∀u ∃v
v w

( w
∀u ∃ ∀∀ ∃x


) or with taller game trees in each branch (

(
well

∀y ∃z
∀x ∃y ∀z

)
), as

as


all of th


e varieties in between. I will not investigate these in depth, but it

is worth noting that perhaps we could be able to use branching logic quanti-
fiers to define a hierarchy similar to the polynomial hierarchy; because of the
variety of ways to define bigger branching quantifiers, the structure of such a
hierarchy would be complicated. I hypothesize that the entire hierarchy would
be contained within EXPSPACE.
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