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Abstract

It has long been known that, relative to a random oracle, PHA and PSPACEA are
separate with probability 1 [H̊as86]. We present the recent result proved in [RST15]
that, in fact, the polynomial hierarchy PHA is infinite with probability 1.

This result follows from certain average-case circuit lower bounds for constant-
depth circuits. These lower bounds rely on a generalization of the standard ”random
restriction” method for proving AC0 bounds, namely random projections. This paper
seeks to motivate and explain these generalizations from the previously known worst-
case lower bounds.
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1 Introduction

The study of Turing machines generally treats Turing machines as black boxes which take
strings as input and perform some computation which can be simulated by a Universal
Turing Machine. Results proven about Turing machines viewed this way relativize with
respect to oracles O: if the Turing machines are allowed to make queries to O, then the
result still holds in this ”relativized world”. Unfortunately, Baker, Gill and Solovay showed
that there exists some oracle A such that PA = NPA, as well as some oracle B such that
PB 6= NPB , so the question of P = NP cannot be decided relative to all oracles.

Instead, we can consider this question relative to a random oracle. By the Kolmogorov
zero-one law, two complexity classes are almost always or almost never separated relative
a randomly chosen oracle (with probability 1 or 0). Initially, it was conjectured that this
probability was 1 if and only if the two classes are separate without any oracles (the Random
Oracle Hypothesis); this was proven false, most notably with the counterexample that IP =
PSPACE, but not relative to random oracles.

It has been known since around the 1980s that there exists some oracle such that PHA
A

=6
PPSPACE ,A, and for all k, Σk 6 P,A= Σk+1 [H̊as86] In 1986, Cai proved that PHA 6= PSPACEA

for random oracles A [Cai86]. Recently, Rossman, Servedio and Tan proved the last piece
P,A P,Aof this result that Σk =6 Σk+1 for random oracles A.

The central results of these random oracles are actually bounds on constant-depth circuits,
a very well-studied area. At a high level, we can think of Turing machines with oracles
as analogous to circuits: we convert a Turing machine MA run on a particular input x

(|x| ∆
= n) to a circuit C with N = 2poly(n) input wires corresponding to the values of

A. (Phrased as non-uniform Turing machines, the input string becomes the advice string,
and the oracle becomes the input.) Then, Turing machines in P correspond to poly(n) =
polylog(N)-depth decision trees (which can be written as either DNFs or CNFs). Then,
adding a quantifier corresponds to adding an alternating layer on top of the tree, so ΣP

k

Turing machines correspond to depth-(k + 1) (alternating) circuits with an OR on top.
Figure 1 summarizes this correspondence. Note that this correspondence is not a true one-
to-one correspondence: proving random oracle bounds from circuit bounds still requires
a diagonalization argument, as we need to create mismatches over original inputs of the
Turing machines.

We state the main circuit bounds referenced in this paper:

Theorem 1. [Yao85, H̊as86]. There exists a universal constant c0 such that any depth d
1c (

circuit C of size at most 2n
0 )

d does not agree with PARITY on all inputs.

Theorem 2. [Cai86,H̊as86]. There exists a universal constant c0 such that for any ε > 0,
1c (

any depth d circuit C of size at most 2n
0 d

)

does not agree with PARITY on at least ( 1 ε2− )·2n
inputs.

Theorem 3. [H̊as86]. There exists a universal constant c0 such that any depth d circuit C
1c (

of size at most 2n
0 d

)

and bottom fan-in c0( logn ) does not agree with Sipserd d on all inputs.

Theorem 4. [RST15]. There exists a universal constant c0 such that for any ε > 0, any
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Oracle world Circuit world

Turing machine on size-n input Circuit C with N = 2poly(n) inputs
Oracle O Input wires x ∈ {0, 1}N

Turing machine in P polylog(N)-depth decision tree
Turing machine in NP polylog(N)-width DNF

Turing machine in coNP polylog(N)-width CNF

Turing machine in ΣP
d or ΠP

d
Depth-d+ 1 circuit with polylog(N) bottom fan-in;

alternatively, a depth d circuit
Random oracle Random input

Separation relative to some oracle Worst-case lower bounds
Separation relative to random oracles Average-case lower bounds

Figure 1: Oracle ←→ circuit mapping (expanded from [Bar15])

1c (

depth d circuit C of size at most 2n
0 d

)

and bottom fan-in c0( logn
d ) does not agree with

Sipserd on at least ( 1 inputs.2 − ε) · 2
n

The remainder of the paper will work towards proving these bounds. Section 2 will give our
general framework of proving circuit lower bounds using random restrictions, and Section 3
will prove Theorem 2 using this method. We will then extend our restrictions to prove
Theorems 3 and 4 in Sections 4 and 5, respectively. All of these proofs use the powerful
switching lemma, whose proof we defer to Section 6. Finally, Section 7 will use these main
theorems to prove bounds on PH and PSPACE relative to random oracles.

The primary goal of this paper is not to provide a rigorous proof, but instead is to motivate
the powerful generalizations of random restrictions which have been developed. As such,
we will occasionally gloss over or even omit details from these proofs, including some of the
exact constants used. These details can be generally be filled in by the reader, or can be
found in the source papers themselves.

2 Circuit lower bounds via random restrictions

Our main tool to prove the circuit complexity bounds is the method of random restrictions.
These restrictions allow us to reduce the depth of a circuit by randomly fixing some small
subset of the inputs. We first introduce the general framework and desired properties for
proving bounds with these random restrictions, and then explore the restrictions used to
prove each of the depth-hierarchy theorems.

Remark. Throughout this survey, we assume our circuits (or functions computable by cir-
cuits) are arranged so that successive layers alternate between OR and AND gates; otherwise,
we could merge adjacent layers and shrink the circuit. We also 0-index the layers of circuits,
so that a depth-d circuit has gates at levels 0 . . . d− 1.
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2.1 Desired properties of restrictions

We use the notation introduced by [RST15]. We’d like to show that a particular target
function f : {0, 1}n → {0, 1} cannot be approximated by any depth-d circuit C. (Our
target function is usually some structured but difficult function like PARITY.) We then
specify some series of (distributions of) random restrictions {Rk}dk=2 so that:

• Property 1: Circuit C simplifies. We would like our random restrictions to
actually reduce the depth of C. In particular, we successively apply restrictions ρk ←
Rk for each k from d to 2, and would like the kth restriction to, with high probability,
decrease the depth of C from k to k − 1. We usually prove this with the help of a
switching lemma, which states that a random restriction of a CNF or DNF can be
written as a small-depth decision tree. At the end of our process, our circuit is thus a
relatively simple small-depth decision tree.

• Property 2: Target f remains structured. We would like for the target function
to, unlike the circuit, remain structured and difficult (with high probability). We
prove this by explicitly using the structure of our target function and showing that it
is (in some sense) preserved.

• Property 3: The reduced f cannot computed by simple circuits. We would
like to qualitatively show that f in fact remains hard. Thus, we show that the struc-
tured functions we get from f cannot be computed by the simple circuits we get from
C. This step reflects the main balancing act: we need to chose our probability of
restricting each variable carefully so as to reduce the circuit with high probability,
without making the target function too simple.

These two properties already can prove worst-case bounds, by taking union bounds over
the first two properties: if with some probability, the restricted circuit is ”too simple” to
compute the ”well-structured” restricted target function, then the circuit cannot exactly
compute the target function, as restrictions only fix inputs.

However, these are insufficient to prove the average-case bounds that f and C are uncorre-
lated over all inputs, not just the restriction. To do this, we need the following additional
property:

• Property 4: Restrictions complete to U . We would like our restrictions to mimic
the overall distribution of inputs. More formally, we would like choosing a random
input X ← U({0, 1}n) to be equivalent to first choosing restrictions ρk ← Rk and
then drawing remaining inputs from some distribution D.

We also need the stronger version of Property 3 that the reduced f cannot be approximated
by simple circuits (over D). Then, with high probability, the restricted circuit and restricted
target are uncorrelated over D, so the original circuit and original target are uncorrelated
over the uniform distribution.
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2.2 Our random restrictions

We now present a brief overview of the restrictions and target functions used to prove our
bounds.

First, in Section 3, we separate constant-depth circuits from general circuits. We use PARITY
as our target function, which computes the parity of the number of 1s in the input. This is
fairly simple to analyze, and was first considered by Yao and Hastad in 1985. We chose our
random restrictions so that, with some fixed probability p, we leave the variable unfixed;
otherwise, we fix it at 0 or 1 with equal probability. This retains the structure of PARITY,
as PARITY restricted to some subset of the variables is just PARITY on that subset. No low-
depth decision tree computes (approximates) PARITY, as it always depends on all inputs.
Furthermore, this trivially completes to uniform, as 0 and 1 are symmetric. It remains to
show the first property that any circuit simplifies, which is the result of Hastad’s original
switching lemma.

Proving depth hierarchy theorems is harder. In this case, we consider the target Sipserd
circuit, which is, in some sense the ”bushiest” (and simplest) depth-d circuit. Layers are
alternating, each layer’s gates have fan-in about n1/d, and each variable is read exactly once
(we define this more rigorously below). Unfortunately, our simple random restrictions do
not preserve the structure of Sipserd (Property 2) (in fact, by the switching lemma, they
destroy Sipserd).

Instead, Hastad proposed using certain blockwise random restrictions, which are built specif-
ically to preserve Sipserd. Essentially, we consider restrictions which are not directly product
distributions: we process the restriction in blocks, corresponding to sub-trees of the Sipserd
circuit. In each block, our restriction always leaves at most 1 variable unfixed. Thus, these
restrictions match the structure of Sipser, but are chosen to still reduce general circuits.

The above blockwise restriction is sufficient to prove worst-case bounds, but due to the
strong correlation in each block, it is difficult to complete to the uniform distribution. The
solution by [RST15] is to generalize randomized restrictions to randomized projections, which
restrict some variables and fix others as equal (instead of setting only 1 unfixed variable).
The desired properties still hold, and the projection actually gives us enough flexibility to
complete to the uniform distribution.

3 Inapproximability of PARITY: standard random re-
strictions

In this section, we prove that PARITY cannot be approximated by any constant-depth
circuits using ”vanilla” or ”standard” random restrictions. We begin by formalizing the
definition of a restriction.

Definition 5 (Restriction). Let A be a set. Given a map ρ : {xi}i∈A → {0, 1, ∗}A and
−1

function f : {0, 1}A → {0, 1} on variables xi, the restriction (f�ρ) : {0, 1}ρ (∗) → {0, 1} is
defined as (f�ρ)(y) = f(x), where xi = ρ(xi) if ρ(xi) = 0, 1 and leaves xi = yi otherwise.
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Essentially, a restriction fixes some subset of the variables.

Restriction ρ′ is said to refine ρ if ρ′’s labeling of xi does not disagree with any of ρ’s
labels. We can randomize restrictions by specifying a distribution R of such maps and
letting ρ← R.

Definition 6 (Standard random restrictions). We define the ”standard” distribution Rp of
random restrictions over {0, 1}A for 0 ≤ p ≤ 1 to be: for each i ∈ A, choose ρi independently
according to

ρi =

∗ with probability p

1 with probability 1−p
2

0 with probability 1−p
2

Our main power for these restrictions comes from the following switching lemma:

Theorem 7 (Hastad’s switching lemma). Consider a width-t DNF (or CNF) F (each clause
has at most t variables), and consider a random restriction ρ← Rp. Then, for sufficiently
small constants p, with probability at least 1−(pt)O(s), F ′ = F �ρ can be written as a decision
tree of depth at most s. Note that this decision tree can be converted to either a width-s
CNF or DNF.

There are a variety of proofs of the switching lemma, all of which are fairly tedious, and
none of which are very enlightening. As such, we will defer the proof to Section 6.

Corollary 8. Consider any alternating Boolean circuit C with depth d ≥ 3, and consider a
random restriction ρ← Rp. Let g be the number of gates in the second-to-last level. Then,
with probability at least 1− g(pt)O(s), C ′ = C�ρ can be written as a depth d− 1 circuit with
bottom fan-in s (and the same upper d− 2 levels).

Proof. Consider each of the gates in the second-to-last layer of C. Without loss of generality,
let them be OR gates. Then, the subtree at these gates form width-t DNFs, so by the
switching lemma, we can replace them with width-s CNFs, which can be merged into the
layer above. Our new probability bounds comes from a union bound over these g gates.

We now prove a slightly modified version of Theorem 2.

Theorem (Modified Theorem 2). There exists a universal constant c0 such that for any
1c (

ε > 0, any depth d circuit C of size at most 2n
0 d

)

with all bottom gates with fan-in at most
n

1
2d does not agree with PARITY on at least ( 1 inputs.2 − ε) · 2

n

Note that this still implies Theorem 2, as any depth-d circuit is a depth-d + 1 circuit with
bottom fan-in 1.

1

Proof. We choose p = O(n− 2d ), and set the restrictions for each level to be Rp. (Recall that
we perform d− 1 restrictions in sequence). Then, we can prove the following properties:
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• Property 1: Circuits do simplify under random restrictions. After d− 1 restrictions,
1

by the corollary with s = t = n 2d , we end with a decision tree of depth n
1
2d . This

occurs with probability at least 1− g(pt)O(n
1
2d ), where g is the size of the C (actually

only the first d−1 levels of C). We chose pt = O(1), so this is negligible for g < 2n
c( 1 )

d

for some universal constant c.

• Property 2: PARITY reduces to PARITY under random restrictions. In particular,
after some restriction ρ, PARITY�ρ corresponds to either PARITY or the complement
of PARITY on the remaining variables. With high probability (by a simple Chernoff
bound), we have approximately pd−1n = O(

√
n) variables left.

• Property 3: PARITY (or its complement) on k variables cannot be approximated
by decision trees of depth k − 1. This follows from the observation that along each
path of the decision tree, we can read at most k

1
− 1 of the variables. Then, each

(reachable) branch of the tree is correct exactly of the time, so the decision tree2
cannot approximate PARITY better than 1 of the time.2

• Property 4: The random restrictions complete to uniform. This is trivial, as Rp
selects 0 and 1 with equal probability.

Thus, with all but negligible probability, the restriction of C matches PARITY on exactly 1
2

of the inputs, so C does not match PARITY on at least 1
2 − negl(n) fraction of inputs.

4 Incomputability of Sipser: Hastad’s blockwise restric-
tions

We now extend our restrictions to sketch the proof the worst-case depth hierarchy theorem
(Theorem 3). We omit many of the details, as they can be seen as simplifications of the
average-case depth hierarchy theorem we will prove in Section 5.

We must introduce two new concepts: a new target function, and a new restriction.

Our target function is essentially the ”biggest and baddest” possible depth-d circuit. All
gates (except the top and bottom) have the same fan-in, and no variables are repeated.

Definition 9 (Sipser function). Sipserd is a ”read-once monotone” depth-d Boolean formula
on n variables consisting of AND and OR operations. It is the function computed by a depth
d polynomial sized circuit C with n leaves, each taking a distinct input variable. Every path
in C alternates between AND and OR gates starting with AND gates on the bottom-most
layer.

Let the gates at depth k have fan-in wk. Then, set wd 1 = m, define w = w− d−2 = ... = w1 =
bm2m/ log(e)c, and choose w0 so that the output is as balanced as possible (probability of
outputting 0 and probability of outputting 1 are both about 1 ). This is necessary for there2
to not be a trivial approximator for Sipserd.

We also introduce some notation to describe Sipser.
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• First, we give a system to label gates (or wires) of Sipserd. Let A0 := {output} and
recursively define Ak := Ak 1 × [wk 1] where w uniform− k the− −1 is fan-in of the depth
k− 1 gates of the Sipserd. An element of Ak specifies a gate of the circuit at depth k,
and Ad are the input wires.

• (k)
Sipser A

d : {0, 1} k → {0, 1} is the depth-k subformula obtained by letting the depth
k gates of Sipserd be input variables.

Now unfortunately, our original standard restrictions do not preserve the structure of Sipserd.
This is somewhat unavoidable, as they were designed to destroy constant-depth circuits, such
as Sipserd itself.

Instead, we design a new set of restrictions specifically to match (and thus preserve) the
structure of Sipser.

Definition 10. Let {◦p, •1 p} be the distribution over {◦, •} with ◦ weighted p and− •
weighted 1− p.
Definition 11 (Blockwise restrictions). We define restrictions over the set A× [w], which
we view as |A| blocks of size w.

We define R+
p : {ρ : {xa,i} A [w]

(a,i) A [w] → {0, 1, ∗} × } to be the following distribution of∈ ×
restrictions: independently for each block a ∈ A,

• With probability q, sample ρa ← g({∗q, 11 q}w). Here, g : {∗, 1− }w → {∗, 1}w turns all
terms except the first ∗ into 1s.

• With probability 1− q, sample ρa ← {0q, 11−q}w.

We define R−p in the same way, except swapping 1s and 0s.

We use R+
p in layers with AND gates, and R−p in layers with OR gates.

Thus, we get the key property of these blockwise restrictions: each restriction collapses
about 1 − p fraction of the AND gates in the bottom layer of Sipser to value 0, which are
absorbed by the OR gates above it, while the rest are collapsed to a single variable (by g).

Thus, for appropriate choice of p, we essentially collapse Sipserd to Sipserd 1, so after d− − 1
restrictions, Sipserd is collapsed to only the top level AND or OR gate with about a fraction
p of the fan-in, which cannot be computed by any decision tree of smaller depth.

In contrast, the switching lemma still holds for circuits with small fan-in, so these circuits
collapse to a shallow decision tree. The proof is once again involved and is only a slight
variation of the previous switching lemma.

Together, these statements prove worst-case bounds for computing Sipser.

Unfortunately, our blockwise restrictions cannot complete to uniform. Because we apply g to
restrict the number of variables passed through Sipser, the restrictions of different variables
become quite correlated. In the next section, we show how to redefine these restrictions to
avoid correlation and to obtain an average-case bound.
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5 Inapproximability of Sipser: RST’s adaptive projec-
tions

This section presents the proof of Theorem 4 given in [RST15]. We begin by defining
projections and stating our random projections, which are adaptive based on previous pro-
jections. Then we show these projections satisfy Properties 2-4 of Section 2.1. Property
1 is handled in Section 6. Together, these compose a proof of Theorem 4.

5.1 Defining random projections

We first collect the parameters we will use to define our random projections.

Definition 12 (Parameters). Recall⌊ Sipserd is formally defined in terms of its bottom fan-in
m

m and subsequent fan-in w := m2
log(e)

⌋
≈ n1/d.

1. λ := (logw)3/2

w5/4

2. p := 2−m and q := 2−m/2.

≤ ≤ − w(1 t d
d) −1−λ3. tk for 1 k d are defined recursively: let td := 1/2, td :=−1 q = p−λ

q ,

and tk−1 := (1−tk)qw−λ for 1q ≤ k − 1 ≤ d− 2.

Roughly, tk corresponds to the probability that a wire in the kth layer is fixed. We choose
λ and q so that tk is always close to q. We will motivate the rest of the definitions later.

Definition 13 (Projection). We consider functions f mapping |A| blocks of length w. Then,
a projection merely sets all variables in a single block to be equal.

More formally, consider f : {0, 1}A×[w] → {0, 1}. Then, we define proj(f) : {0, 1}A → {0, 1}
to be (proj(f))(y) = f(x) where xa,i = ya for all a.

For a restriction ρ : {xa,i}a A,i [w] → {0, 1, ∗}A×[w] of function f : {0, 1 A
∈ ∈ } ×[w] → {0, 1}, the

projection projρ(f) first applies the restriction ρ. Then for each block a ∈ A, we replace all
unlabeled variables xa,i with a fresh formal variable ya. Alternatively, projρ(f) = proj(f�ρ).

Projections can be thought of as generalizations of the blockwise restrictions used above:
instead of limiting the number of ∗’s in each block, we merely make them all equal.

Definition 14 (Adaptive Random Restrictions). For τ ∈ {0, 1}Ak define the distribution
R(τ) over refinements ρ ∈ {0, 1}Ak of τ as follows:

For each block a ∈ Ak 1, define Sa = τ−1
a (∗) ⊆ [wk 1] and define ρ(S substring− a) as the−

of ρ with coordinates in Sa, i.e. the substring of ρ we need to restrict. Without loss of
generality assume layer k−1 consists of AND gates. Independently for each block a ∈ Ak−1:
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If τ̂a = 1, then the block a in layer k consists of all 1s so there is nothing to set (Sa is
empty).

If Sa 6≈ qw or if τ̂a = 0 (meaning block a in layer k has at least one 0), then

ρ(Sa)← {0tk , 11−tk}Sa

If Sa ≈ qw and τ̂a = ∗ in layer k − 1, then

{1}m with probability λ

ρ(Sa)←


{∗tk , 11−tk}m {1

m

}m with probability qa

{0tk , 1 m
1 tk} {1} with probability 1− − λ− qa

where qa is chosen to satisfy (1− tk)|Sa| = λ+ qatk−1.

In general, we should have |Sa| ≈ qw, which motivates the recursive definition of tk.

Definition 15 (RST Projections). The sequence of random projections in [RST15] is de-

fined by the random restrictions ρ(d) ← Rinit and ρ(k) ← R(ρ̂(k+1)).

Let Ψ := projρ(2) ◦ projρ(3) ◦ ... ◦ projρ(d) denote the composition of all projections.

For the distribution Rinit of restrictions applied to the dth layer, Sa = [wd 1] so we set−
ρ(Sa) according to the last case in Definition 14 recalling that td = 1/2.

Remark 16. The RST restrictions are adaptive in the sense that the restrictions in layer
k − 1 depend on the outcome (or lift) of the restriction in layer k. This adaptiveness, the
choice of qa, and the definition of Rinit permit Ψ to complete to uniform; see Section 5.2.

Definition 17 (Lift). For a restriction τ ∈ {0, 1, ∗}Ak , its lift τ̂ is the string in {0, 1, ∗}Ak−1

corresponding to setting the gates at level k according to τ .

For example, say layer k − 1 consist of AND gates. For gate a ∈ Ak 1, if τa,i = 0 for some−
i ∈ wk 1, then τ̂a = 0. If τ w

a = {1} k−1 , then τ̂a = 1. If τa ∈ {∗, 1 w
− } k−1 \ {1}wk−1 , then

τ̂a = ∗.

5.2 Random projections complete to uniform

In this section we show Property 4 of Section 2.1. This is the key property of the random
projections which was difficult to achieve for random restrictions. More formally, we show
that the outputs of function Ψ(Sipserd) on Y ← {01−t1 , 1t1}w0 =: D have the same distri-
bution as the outputs of Sipserd on X ← {01/2, 11/2}n. Then we can essentially simulate
the latter by the former.

Recall Ψ(Sipserd) is Sipser (
d with depth k gates labeled according to ρ k) for all k ≥ 2.

11



Definition 18 (Percolate). To percolate from layer 0 to layer d, label the depth 1 gates

according to ρ̂(2). Fill in any unlabeled gates by sampling independently from {01−t1 , 1t1}.
We let the labels of layer 1 ”percolate” downwards so that any unlabeled children in the
tree receive the same label as their parent. We can similarly define percolating from layer
k − 1 to layer k given a restriction τ for layer k and a label distribution of {0p, 11 for−p}
layer k − 1.

Lemma 19. We consider the case for k even. Let τ ∈ {0, 1, ∗}Ak ,ρ ← R(τ). Percolate
from layer k − 1 to layer k. Each label at layer k resulting from percolation (not from τ) is
distributed according to {0tk , 11−tk}.

Proof. This follows from Definition 14 by computation. Recall qa is chosen so that (1 −
tk)|Sa| = λ+ qatk−1.

Showing the result for block a ∈ Ak suffices. Let Sa = τ−1
a ( ) [wk 1] be the unlabeled

gates in layer k. Let Z ← {0, 1}Sa

∗ ⊆ −

a be the random variable corresponding to the percolated
labels. By Definition 14,

P[Z = 1Sa ] = λ+ q P[percolated 1] = λ+ q t = (1− t )|Sa − a
a a k 1 k

|.

Now for any Z ∈ {0, 1}|Sa| \ {1}Sa ,

tu t u

P Za = Z] = (1−λ−qa · k
(1

[
− k)|Sa|−

)
1− (1− tk)|Sa|

+qa(1−tk−1) · t
u
k(1− tk)|Sa|−u

1− (1− tk)|Sa|
= tuk(1−tk)|Sa|−u.

The following theorem follows from applying Lemma 19 several times (recall td = 1/2):

Theorem 20. If we percolate Ψ(Sipserd) from layer 0 to layer d as described in Defi-
nition 18, then the labels of the dth layer are distributed uniformly (i.e. according to
{01/2, 1

n
1/2} ).

Corollary 21. P[Sipserd(X) 6= C(X)] = P[(Ψ(Sipserd))(Y ) 6= (Ψ(C))(Y )]
for X ← {01/2, 11/2}n,Y ← {01−t1 , 1t1}w0 .

This follows by applying Theorem 20 and viewing (Ψ(C))(Y ) as C(Ψ(Y )).

The remaining sections show Ψ(C) and Ψ(Sipserd) are of certain forms with high probability
(taken over Ψ) and that these forms do not correlate well over D.

5.3 Sipser remains biased under random projections

In this section we show Property 2 of Section 2.1. We define typical restrictions to have
limited consequences for our function (even under composition) and show the RST restric-
tions are all typical. This shows Ψ(Sipserd) remains biased (i.e. the distribution of outputs
is close to {01/2, 11/2}).

12



Definition 22 (Typical Restriction). τ ∈ {0, 1}Ak is typical if

(1) |τ−1
a (∗)| ≈ qw for all a ∈ Ak 1 and−

(2) |(τ̂a)−1(∗)| ≥ wk 2 − w4/5 for all a− ∈ Ak−2.

The first claim is pretty clear and follows from the fact that the probability of not restricting
a subtree is precisely qa ≈ q. The second claim merely corresponds to the low probability λ
of fixing a subtree entirely at 1s (for an AND level).

Without loss of generality let k − 1 consist of AND gates. If τ is typical, these conditions
imply that inputs to a ∈ Ak 1 are not all 1 so layer k− 1 evaluates to− {0, ∗}wk−2 \ {0}wk−2 .
Thus no OR gate in layer k−2 has a set value. In general, typical restrictions to set variables
at depth k while leaving variables at depth k − 2 untouched.

Proposition 23. With respect to RST restrictions:

(a) ρ̂(d) is typical with high probability

(b) if ρ̂(k) is typical then ρ̂(k−1) ← R(ρ̂(k)) is typical with high probability.

(d)
For an idea of why (a) holds, note that by definition P[ρa,i = ∗] = q so we expect qw inputs
in block a to be ∗ (remain undetermined/unassigned). A Chernoff bound will show that
deviation from expectation is small with high probability. For (b), we have a lower bound
on the number of ∗ in layer k− 1 and using the adaptive nature of ρ(k−1) we can bound the

expected number of ∗ in any block of ρ̂(k−1) to be ≈ qw. Again Chernoff bounds will show
that deviation is small with high probability.

Applying Ψ to Sipserd allows us to reduce the depth of Sipserd without affecting its output
distribution.

Proposition 24. Ψ(Sipserd) ≡
(1)

Sipserd �ρ

(

(̂2)

k)
Proof. Note that projSipserd ≡ (k

Sipser
−1)

d (here we are projecting without restricting).
(d) 1)

Therefore projρ( )Sipserd ≡
(d

d Sipser
−

d �ρ(d).

(k)
Note that projρ(k)(Sipserd �ρ̂(k+1)

̂
≡ (k) (k 1)

) proj(Sipser ( −
d �ρ k)) ≡ Sipserd �ρ(k) where the first

equivalence follows from recalling that ρ(k) refines ρ̂(k+1). Repeatedly applying this fact on
(d) (d 1)

top of projρ(d)Sipser Sipser
−

d ≡ d �ρ̂(d) suffices.

̂

Theorem 25. For Y ← {0 0
1 t1 , 1t1}w , E− Ψ

[
PY
[
(Ψ(Sipserd))(Y ) = 0

]]
≈ 1/2. Formally,

˜this expected value is bounded between 1/2±O(w−1/12).

13



Proof. With (very) high probability by Proposition 23, ρ(d), ...,ρ(3) are typical. It suffices
(1)

to bound γ := P [(Sipser �ρ

̂
(̂2))(Y ) = 0]. By typicality, |(ρ̂(2) 1

Y d )− (∗)| ≈ qw0 with high
probability. Recall that we assume d is even so the top gate of

̂
Ψ(Sipserd) is an OR gate.

So γ ≈ (1− t1)qw0 ≈ 1/2 by Definition 9.

5.4 Projected Sipser cannot be computed by simple circuits

In this section we show Property 3 of Section 2.1.

Theorem 26. For any width-s CNF F : {0, 1}w0 → {0, 1} and restriction τ{0, ∗}w0 \{0}w0 ,

P[(OR�τ)(Y ) 6= F (Y )] ≥ P[(OR�τ)(Y ) = 0]− st1
for Y ← {01−t1 , 1t1}w0 .

Proof. Let S be the subset of [w0] that are not set by τ . Here, let OR refer to the OR of
elements of S. There exists ρ, a restriction on variables [w0] \ S, such that

P[OR(Y ) 6= F (Y )] ≥ P[OR(Y ) 6= F ′(Y )]

where F ′ = F �ρ (depending only on variables in S). The lower bound holds in either of the
following cases:

If for all clauses in F ′, there is a negated variable, then F ′(0S) = 1 6= 0 = OR(0S). This
occurs with probability P[(OR�τ)(Y ) = 0].

Else some clause does not contain a negation of a variable. In this case, the probability that
OR(Y ) and F ′(Y ) do not agree is at least

P[OR(Y ) = 1]− P[F ′(Y ) = 1] ≥ P[OR(Y ) = 1]− rt1
(recall all literals of this clause are true with probability ≤ rt1 by union bound).

5.5 Proof of RST’s Hierarchy Theorem

We now state the projection switching lemma. This is used to show the RST projections
satisfy Property 1 of Section 2.1, namely that approximating circuits reduce to decision
trees with high probability. The proof is once again similar to the previous switching lemmas,
and is breifly discussed in Section 6.

Theorem 27. Consider a width-t DNF (or CNF) F : {0, 1}Ak → {0, 1} (each clause has at
most t variables), and consider a random restriction ρ← R(τ). Then, for sufficiently small
constants p, with probability at least 1 − O(rertk/(1−tk) · w−1/4)s, F ′ = F �ρ can be written
as a decision tree of depth at most s. Note that this decision tree can be converted to either
a width-s CNF or DNF.

We now have Properties 1-4 (specifically results 21, 24, 25, and 26) for Sipserd, so we can
conclude that Sipserd cannot be approximated by bottom fan-in depth d circuits with small
bottom fan-in (Theorem 4).

14



6 Proofs of Hastad’s Switching Lemma

We now present a proof of Hastad’s switching lemma (Theorem 7) for the original random
restrictions. The same proof techniques generalize fairly easily to switching lemmas for our
restrictions and projections.

Recall from the statement of the lemma that we have width-t DNF F and a random restric-
tion ρ ← Rp. Then, we would like to construct a depth-s decision tree for F ′ = F �ρ with
probability at least 1− (pt)O(s).

Hastad’s original proof of this statement is fairly complex and involves computing various
conditional probabilities. Instead, we present a proof method by Rasborov.

Proof of switching lemma. Our proof will explicitly exhibit a ”canonical decision tree” which
computes F ′, and we will bound the probability that ρ is a ”bad” restriction, i.e. that the
canonical decision tree has depth at least s.

Definition 28 (Canonical decision tree). We recursively construct a decision tree for a
DNF G. First, if G is identically 0 or 1, just output G. Otherwise, consider first clause T in
G which is not guaranteed to be either 0 or 1 (we impose some arbitrary canonical order).
Then, condition on all unset variables xi in T as the first layers of the decision tree, and
recursively build the rest.

Clearly, this canonical decision tree computes G.

Our proof will now use the structure of the decision tree to make an injective mapping (or
encoding) from the set of bad restrictions to {0, 1, ∗}A × {0, 1}O(s log(t)).

The way this proof is generally phrased is that, for ρ → (ρ′, enc), the probability (under
Rp) of ρ′ is at least p−O(s) times that of ρ, so taking a union bound over strings enc, the
probability of a bad restriction is at most∑∑

P [ρ′]pO(s) = 2O(s log(t)) · 1 · pO(s) = (pt)O(s)

enc ρ
Rp′

Remark. This view of the proof is slightly flawed: ρ′ is really only a restriction in the sense
that it lives in {0, 1, ∗}A, and is in fact used to ”hide” information just like enc. As such,
considering the probability of ρ′ under Rp is misleading, as ρ′ does not represent a possible
restriction at all; the probability is just a useful measure which sums to 1.

Unfortunately, removing this from the proof results in a significantly more tedious proof, so
we will not attempt this. Instead, keep the following in mind as we proceed:

• We could replace the P
p
[ρ′] with many other functions, but this particular probabilityR

matches the exponential nature of PRp
[ρ] quite well.

• The key part of this proof is changing the order of summation and bounding the outer
sum (part of the ”extra information”) with only 2O(s log(t)) possibilities, while hiding
the remaining information in the gaps of ρ itself.
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In this proof, we treat the negations of variables as formal variables themselves. Thus, if
x = ¬y appears in clause T , we will treat setting x = 1 as setting y = 0.

We now specify our encoding. Consider any bad encoding ρ. Then, there is some path in
the canonical decision tree with depth at least s (setting at least s variables). Let the path
correspond to setting variables xv1 , . . . , xvs to be π1, . . . , πs. Our encoding consists of the
following procedure:

• Initialize ρ′ = ρ, and keep an encoding string.

• For each node i in the tree, consider Fi
′, defined as F ′ restricted up to that point in

the decision tree. Let xvi be the kth term in clause T . By construction of the decision
tree, at this point, no terms are entirely true, and T is the first term without any
variables set to false.

Then, set ρ′(xvi) = 1, and add πi and ki to the encoding (with 1 + log(t) bits).

It remains to show this is injective. We prove this by showing a procedure for inverting this
encoding. We invert the process from iteration 1 to s.

• Initialize ρ = ρ′. At any point, ρ will essentially match the restriction for Fi, with
some additional bits set from ρ′.

• First, note that our procedure only sets values in ρ′(xi) to be true, and only sets them
in left-to-right order. Thus, the first term T in F �ρ which is has no variable set to
false is actually the term in Fi

′ which contains xv1 .

Thus, given the position ki of xvi in T , we can recover vi. Finally, we can replace
ρ(xvi) = πi to descend into the next level.

Thus, we are(done, as ρ′ has exactly s more bits set than ρ, so the probability is higher by

the at least 1−p
2p

)s
= p−O(s) for sufficiently small p.

Some final notes: our encoding essentially cleverly hid the locations of the variables set on
the path by breaking symmetry in the restriction (setting ρ′(x) = 1), and then storing less
information than previously necessary by the structure of bounded-width gates.

We conclude this section with a brief discussion of how to generalize this proof to random
projections.

This proof method generalizes well to random projections. Our decision tree structure is
modified to set the new projected variables ya, and we need some additional bits in the
encoding to tell us which of the xa,i were fixed in the projection and which were only fixed
in the decision tree. Overall, the structure of the bounds remains essentially the same.

16



7 From circuits to oracles

We now discuss and formalize the connections between circuits and oracles developed in
[FSS84], following the explanations in [H̊as86]. We show how to translate both worst-case
(incomputability) and average-case (inapproximability) circuit hierarchy theorems to results
in relativized worlds.

Recall the characterization of ΣPk alternating Turning machines as circuits. Define the
alternation depth of a circuit to be 1 plus the maximal number of switches between AND
and OR gates along any path. A machine is in ΣPk if it has alternation depth at most k.
We can merge layers with the same gate type so that the depth of the circuit equals the
alternation depth.

7.1 Worst-case bounds construction

Armed with several circuit lower bounds, we show that there exists relativized worlds where
there are separations between PSPACE and PH and between levels of the PH. We begin by
introducing the idea of a weak oracle Turing machine to simplify the form of our circuits.

Definition 29. A weak oracle machine is allowed to query its oracle once at the end of
each computation branch.

P,ALemma 30. For any oracle A and any machine MA Σk , MA decides the same language

as some weak oracle machine MA P

∈
1 ∈

,AΣk+2.

Proof. MA
1 has similar structure as MA except whenever MA queries, MA

1 guesses the
answer to the query by branching out into two branches. It checks all guesses made along
a path using its extra alternations at the end. For instance, if MA makes query Qi at a
AND gate which is the root of subcircuit C. MA

1 creates two wires at this gate connected
to copies of C. It guesses Qi; it assumes the answer to the query Qi was 0 along one branch
and 1 along the other. The OR gate case is similar.

Then MA
1 uses its extra alternations as follows:

MA
1 accepts iff (MAaccepts∧ ∀i, Qi is correct)∨ (∃i, Qi is incorrect∧ ∀j < i,Qj is correct).

Casework on the type of gate whether the first incorrect guess was made shows that MA
1

rejects if M1 rejects. If M1 accepts on some branch, then MA
1 will guess correctly on an

analogous branch and accept.

With respect to oracle A, define Boolean variables yAz for all strings z such that yAz has value
1 iff z ∈ A. Note that any weak oracle machine MA of alternation depth k and (normal)
depth t on any input x corresponds to a circuit C of depth k and size 2t taking a subset
of yAz as inputs. x becomes hardwired into C and any computation in MA depending on

a query is replaced with the appropriate yAz or yAz . In other words, yAz is what we answer
when A is queried on z.
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We use diagonalization to construct an oracle A such that all weak oracle machines do not
compute a language in PSPACE.

Theorem 31. [FSS84]. There exists an oracle A such that PSPACEA 6= PHA.

Proof. For any oracle A, the language

L(A) := {1n|A contains an odd number of length n strings}

is decidable in PSPACEA since we can query for all yAz , |z| = n and directly compute
⊕

yAz .
|z|=n

We will construct A in rounds such that in each round, we ensure another machine in PHA

cannot decide L(A). By Lemma 30, it suffices to ensure all weak oracle machines in PHA

cannot decide L(A). There are countably such machines because there are countably many
P,Amachines in Σk and Z2 is countable. Enumerate all of these machines as MA

1 ,M
A
2 , .... Let

n0 = 1. Say MA
i has runtime cnc. Find m c c0mi/d

i > ni−1 such that cmi � 2 and consider
the circuit C of MA

i taking size mi inputs. This circuit must depend on all yAz , |z| = mi or
else we can trivially set yAz so that C incorrectly computes yAz . The circuit may depend

|z|=n

on yAz for |z| 6= mi. For these, hard-wire any previously set

⊕
yAz and set any remaining yAz

m c c m /d

to 0. By Theorem 1, our depth k circuit on 2 i inputs has size at most expcmi � 22 0 i

so it cannot compute PARITY on all inputs. Thus there exists some setting of yAz , z = mi

so that our circuit fails, so set yA
| |

z , |z| = mi to these bits. Let ni be the maximum length z
such that yAz has been set so far. Set any unset yAz , |z| ≤ ni to 0 and continue with round
i+ 1.

On round i, we force MA
i to be incorrect on 1mi . This process sets yAz for all z and since

the sequence of mi is increasing, our values for yAz never conflict. Therefore oracle A is
well-defined.

Similarly, the proof showing a separation between relativized levels of the PH follows from
defining an appropriate L(A) and applying Theorem 4 in each round.

P,A P,ATheorem 32. [Sip83, Yao85]. There exists an oracle A such that Σk = Σ for all k.−1 6 k

P,A 6 P,AProof. It suffices to construct A such that Σk = Σk 3 for all k > 3 because this implies
P,A 6 P,A

−
Σk = Σk 1 for all k. This is because if the latter were not true for some k, then PHA−

P,A P,A P,Acollapses to Σk 1. By Lemma 30, any Σk 3 machine is equivalent to a weak Σ− − k−1 oracle
P,A P,Amachine. Thus it suffices to separate Σk from all weak oracle machines in Σk−1.

For any A and any k, let t = n/k and define language

Lk(A) := {1n|∃x1...xt∀xt+1...x2t∃...xn such that xi ∈ A}

P,AThis is computable by a Σk machine. As a function of yAz , it is at least as hard to compute
as Sipserk.
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Again, we can use a diagonalization argument to determine yAz in rounds. Enumerate all
Pweak oracle machines in PHA as MA

1 ,M
A A ,A
2 , .... On round i, say Mi is a Σk−1 weak oracle

machine. For an appropriate mi, the computation of MA
i on 1mi is a small, bounded fan-in,

depth k−1 circuit taking yAz ’s as inputs. By Theorem 3, no such circuit can compute Sipserk
(or Lk(A)) on all inputs. As before, this gives us a setting of some yAz in each round.

7.2 Average-case bounds construction

It’s natural to ask whether these separations hold for the average oracle. We focus on the
proof for separation of levels of the PH in Theorem 35. In fact, this separation holds relative
to a random oracle with probability 1.

Remark 33. Formally, any subset of random oracles can be given a measure from [0, 1] and
we show that the subset of oracles for which the separation holds has measure 1.

Theorem 34. [Cai86, H̊as86] For a random oracle A, PSPACEA 6= PHA with probability
1.

P,A P,ATheorem 35. For a random oracle A, Σk 1 6= Σ t− k for all k with probabili y 1.

P,AProof. Recall the definition of Lk(A), a language in Σk for any A. We show that for
P,Arandom oracles A, any weak Σk oracle−1 machine computes Lk(A) with probability 0. We

can consider this class of machines by the same explanation given for Theorem 32, and we
can compute this probability for one such machine because there are countably many.

Consider MA P,A, a weak Σk 1 oracle machine with runtime cmc. Let m− 1 be a constant such
that cmc

1 � 2m1 . Define the sequence mi recursively: mi = cmc
i 1 + 1. Note that if

cmc � 2mj , then cmc cm
−

j j+1 � c2 j � 2mj+1 .

Lemma 36. For any i, the probability that MA agrees with L (A) on input 1mi
k given that

it agrees on 1mj for j < i is at most 1/2 + ε.

Proof of Lemma 36. This probability is taken over random settings of yAz for |z| = mi since
whether a random oracle contains strings s1, s2 are independent events. In particular, by
choice of mi, M

A does not have enough runtime to query about yAz , |z| = mi when trying
to decide 1mj for j < i so the space we take our probability over is ”independent” of the
values of yAz for |z| < mi. Note that MA’s computation on input 1mi is a depth k−1 circuit
which must depend on 2m

c m
i inputs. This circuit has size at most 2cmi � 22 i

. Since depth
is being kept constant, the lemma follows from Theorem 4 by viewing this circuit as a depth
k circuit with bottom fan-in 1.

Therefore, the probability that MA agrees with Lk(A) on all inputs is 0, concluding the
proof of Theorem 35.
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8 Conclusion

Our survey presents several worst-case and average-case circuit lower bounds and highlights
the underlying ideas used in their proofs. We then translate these results into separations of
relativized complexity classes for a ”worst-case” oracle and for an ”average-case” (random)
oracle. Such a connection was realized in [FSS84] but it remained open to show an average
case depth hierarchy theorem until 2015 when [RST15] solved the last piece of the puzzle.

The idea underlying all of these circuit bounds is the restriction, a randomized setting of
gates circuit gates. Repeated use of restrictions has the effect of simplifying sufficiently
small and shallow circuits with high probability while allowing delicate functions to remain
structured. In particular, the former results from switching lemmas showing that we can
turn CNFs into DNFs (or vice versa) and essentially absorb the bottom layer of gates into
the layer above it. The latter relies on choosing the right functions and choosing the right
restrictions to preserve these functions. As discussed, PARITY and Sipser are delicate in
the sense that their outputs are sensitive to small changes in their inputs. Showing that
the restricted forms of such circuits and functions disagree/do not correlate suffices to con-
clude results about incomputability/inapproximability of these functions by circuits. The
well-known ”standard” restrictions are enough to show incomputability of PARITY. To
show certain circuits cannot compute Sipser, Hastad proposed more complicated blockwise
restrictions that leave variables fixed in subcircuits of Sipser. These restrictions are corre-
lated amongst subcircuits so they could not extend to inapproximability. Hence, in order to
get a result about inapproximability of Sipser, RST proposed a generalization of blockwise
restrictions called projections which leave more variables unfixed and are adaptive. As we
saw, the projections are defined in such a way that the Sipser function and circuits both
simplify and over a distribution D of inputs, these simplified forms do not correlate well.
This lack of correlation over D then implies lack of correlation for the original function and
circuit over the original space of inputs.

We show the connection between circuit bounds and relativized complexity by viewing oracle
Turing machines as circuits computing PARITY or Sipser. Here the input variables are the
answers to oracle queries. By our circuit bounds, only the larger/deeper circuits, and hence
the larger relativized complexity classes, can compute these functions.

Restrictions are a general method for obtaining lower bounds. In particular, they have
been applied to obtain size bounds on threshold circuits and Nick’s circuits. It would be
interesting to see whether projections would be useful in these or other areas and what
additional implications circuits bounds may have for relativized complexity.
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