
On polynomial lower bounds based on complexity

of SAT problems

May 7, 2016

Abstract

A large amount of recent work in complexity theory seeks to prove
tight lower bounds on problems within P under the Strong Exponential
Time Hypothesis (SETH) and similar conjectures. Lower bounds for many
problems can be proved via reduction from CNF formulas under SETH.
More recently, work by Abboud, Hansen, Williams and Williams [3] proves
bounds under reductions from more complex representations of SAT; and
Abboud, Vassilevska and Yu [5] prove bounds conditional on at least one
out of three separate conjectures.

We explore three such reductions to Edit Distance [7] and Longest
Common Subsequence (LCS) [1]. Currently, no strongly subquadratic
time algorithms exist to compute these problems. If any of the assump-
tions made in these papers are true, the current near-quadratic time
bounds can be shown to be tight. We also explore a proof of conditional
lower bounds on various types of graph problems by Abboud et al. and
compare the efficacy of these different methods for proving conditional
lower bounds within P.

1 Introduction

Edit-Distance, the number of operations needed to convert one string to another,
is an incredibly important computation problem, whose common dynamic pro-
gramming algorithm runs in time O(n2). This runtime is prohibitive in of the
practical applications of Edit Distance, many of which lie in computational
biology or genomics with input sizes on the order of billions. While faster ap-
proximation algorithms have been developed, there has been no success thus far
in proving upper bounds below O(n2/ log n) for this problem. Current bounds
on Longest Common Subsequence (LCS) are identical to those for Edit-Distance
[3].

String manipulation is not the only area in which lower bounds are highly
sought after. Many questions in graph theory have no known algorithms that
run in time less than O(nc) for some constant c. These include ∆-Matching-
Triangles (best running-time n3), amortized updates and queries for Max-Flow
and other reachability problems (n1), and a slew of other graph problems with
running times of n2 or n3. Proving lower bounds on these problems is beyond
the scope of current complexity theory.

Due to the difficulty that has presented itself in proving unconditional poly-
nomial lower bounds for problems within P (or NP, for that matter), many

1

researchers have turned instead to proving lower bounds conditional on certain
conjectures. Chief among these is the Strong Exponential Time Hypothesis, or
SETH, introduced by Impagliazzo and Paturi [10]. It states that solving k-SAT
on CNF formulas will take almost O(2n) time. In a significant recent paper,
Backurs and Indyk show that Edit-Distance [7] and LCS [1] do not have strongly
subquadratic time algorithms if SETH is true.

Lower bounds for many problems beyond merely those stated above have
been proved under SETH. However, it is a very strong assumption that many
researchers believe to be false. In this survey, we also discuss two further exten-
sions to this current line of research. First, a reduction from the satisfiability
of Branching Programs presented by Abboud et al. that proves lower bounds
for Edit-Distance and LCS under weaker assumptions than SETH [3]. Second,
results from Abboud et al. that prove lower bounds on several graph problems
contingent on one of three conjectures being true: SETH, the 3-SUM conjecture,
and the APSP conjecture [5]. The 3-SUM and APSP conjectures posit lower
bounds on the 3-SUM problem of n2 and on the all pairs shortest-path problem
of n3, respectively.

We introduce all these conjectures in detail in Section 2. In Section 3, we
formally define the problems to which we show conditional lower bounds. Most
of the main theorems and conjectures will be presented in these two sections.
We give proofs to most of these in Section 4, where we actually present the
reductions.

2 Conjectures

2.1 The Exponential Time Hypothesis

At a glance, the Exponential Time Hypothesis (ETH) is the hypothesis that
solving 3-SAT takes worst case exponential time. Notice that this is a stronger
claim than P != NP, because there exist functions between polynomial and ex-√
ponential (e.g. 2 n). The Strong Exponential Time Hypothesis (SETH) claims
that solving k-SAT takes almost O(2n) time, i.e. you cannot do much better
than checking all 2n assignments of variables.

We will now rigorize these conjectures [9]. For each integer k ≥ 2, define a
real number sk to be the infimum of the real numbers δ for which there exists
an algorithm solving k-SAT in time O(2δn), where n is the number of variables
in the given k-SAT instance.

Note that s2 = 0, because 2-SAT can be solved in polynomial time.

Conjecture 1. (ETH) For every k > 2, sk > 0.

Clearly, s3 ≤ s4 ≤ . . ., so it is equivalent to assume that s3 > 0 the positivity
of the remaining numbers sk follows automatically from this assumption.

Conjecture 2. (SETH) The limiting value s of the sequence of numbers s∞ k

equals one.

2

2.2 The SAT hierarchy as an Extension to SETH

While all representations of SAT are equivalent in terms of whether or not they
can be solved with a polynomial-time algorithm, the finer-grained complexity of
SAT problems differs based on the complexity and obscurity of the representa-
tion. A major weakness for SETH is that it relies on the difficulty of satisfying
CNF formulas, which lie low on the hierarchy of complexity of representation.

Abboud et al. [3] present an extension to SETH, C-SETH, that makes similar
claims, but for an arbitrary class C of SAT representations.

Conjecture 3. (C-SETH) Given a representation class C, satisfiability of an
input in C cannot be computed in time (2− ε)n for any ε > 0.

As the complexity of the class C increases, the assumption on the bounds of C-
SETH becomes weaker, and Conjecture 3 becomes more credible. Proving lower
bounds conditional on C-SETH is therefore appealing for richer representations
such as BP-SAT, which we will present below, as the consequences of a strongly
sub-quadratic time algorithm for Edit-Distance would be farther reaching.

2.3 The 3-SUM and APSP Conjectures

The 3-SUM and APSP conjectures posit that the current upper bounds on
algorithms for the 3-SUM and all pairs shortest path problems are tight.

Conjecture 4. (The 3-SUM Conjecture) There is no algorithm that can check
whether a list of n numbers contains three that sum to zero (the 3-SUM problem)
in O(n2−ε) time for any ε > 0.

Conjecture 5. (The APSP Conjecture) There is no algorithm that can compute
all pairs shortest paths (APSP) on n node weighted graphs in O(n3−ε) time for
any ε > 0.

As with SETH and C-SETH, these conjectures are largely based on empirical
arguments. Like Edit-Distance and LCS, 3-SUM and APSP are well-studied in
their respective fields. Despite the effort that has been made to find faster
algorithms for either problem, no strongly subquadratic or subcubic formulas
have been found for 3-SUM or APSP, respectively.

Conjecture 6. At least one of the 3-SUM conjecture, the APSP conjecture, or
SETH, is true.

As an amalgam of three seemingly unrelated conjectures, the above conjec-
ture may seem odd; however, this is actually what makes it so popular in the
field of complexity theory. Any one conjecture on its own may seem refutable,
but that researchers in the fields of computational geometry, graphs algorithms
and exact algorithms all have separately failed to find faster algorithms for these
important problems is far less likely. Thus proving lower bounds conditional on
the Conjecture 6 above becomes very attractive [5].

3 Introduction to Relevant Problems

3.1 Definitions of Problems

Before presenting our reductions under the above conjectures, we define the main
problems for which we will prove conditional lower bounds. These problems fall

3

into two categories: distance measures and various graph problems.

3.1.1 Distance Measures

We will begin by providing precise definitions of various distance measures.

Definition 1. (Edit Distance) For any two sequences x and y over an alphabet
Σ, the edit distance EDIT (x, y) is equal to the minimum number of symbol
insertions, symbol deletions or symbol substitutions needed to transform x into
y.

Remark 1. Some definitions of edit distance are more general, and assign
different weights to substitutions, insertions, and deletions. In the rest of this
paper, we will not distinguish between different types of edits.

Definition 2. (Longest Common Subsequence) For any two sequences x, y over
an alphabet Σ, the longest common subsequence LCS(x, y) is equal to the length
of the longest sequence that appears as a subsequence in both input strings.

3.1.2 Orthogonal Vectors

The orthogonal vectors problem will be our starting point for proving conditional
lower bounds on Edit-Distance and LCS. We will prove that there is no strongly
subquadratic time algorithm to find orthogonal vectors unless SETH is false.

Definition 3. (Orthogonal Vectors) Given two lists {αi}i∈[n] and {βi}i∈[n] of

vectors α d
i, βi ∈ {0, 1} and an integer r ∈ {0, . . . , d}, is there a pair αi, βj that

are orthogonal?

Definition 4. (Most Orthogonal Vectors) Given two lists {αi}i∈[n] and {βi}i∈[n]

of vectors αi, βi ∈ {0, 1}d and an integer r ∈ {0, . . . , d}, is there a pair αi, βj
that has inner product at most r? We call any two vectors that satisfy this
condition (r-)far, and (r-)close vectors otherwise.

Note that this most orthogonal vectors is harder than the regular Orthogonal
Vectors problem.

The reductions to Edit Distance and LCS will be reductions from the Most-
Orthogonal vectors problem. The dependency of SETH on the quadratic lower
bounds on EDIT and LCS is stated in the following three theorems:

Theorem 1. [7] If there exists an algorithm for Most Orthogonal Vectors
that runs in O(2n−ε) time, then there is an algorithm for k-SAT that runs
in O(2n−2εpoly(n)) time (which contradicts SETH).

Theorem 2. If EDIT can be computed in time O(n2−δ) for some δ > 0 on
two sequences of length n over an alphabet of size 4, then Orthogonal Vectors
Problem with A = B = N and A,B 0, 1 d can be solved in time dO(1)

N2 δ
| | | | ⊂ { } ·

− .

Theorem 3. If LCS can be computed in time O(n2−δ) for some δ > 0 on
two sequences of length n over an alphabet of size 4, then Orthogonal Vectors
Problem with |A| = |B| = N and A,B

2 δ
⊂ {0, 1}d can be solved in time dO(1) ·

N − .

4

3.1.3 BP-SAT

In addition to reductions under SETH, we will prove lower bounds on LCS
under BP-SETH [3]. We first define the satisfiability of Branching Programs,
or BP-SAT. A nondeterministic Branching Program of length T and width W
is defined as a graph with T layers of W nodes each, with a single start node
ustart at the first layer, and the single accept node uaccept at the last layer. All
the nodes in a given layer except the last one are marked with a variable xi, and
have an arbitrary number of outgoing edges to the next layer, each marked 0 or
1. The BP is evaluated on an input x1, x2, ..., xn ∈ {0, 1} as follows: starting at
ustart, at each node ui,j marked with variable xk, we can traverse any edge e
marked with value c ∈ {0, 1} such that c = xk. The BP accepts iff it terminates
at node uacc.

Definition 5. (BP-SAT) Given a Branching Program P on n boolean inputs,
decide if there is an assignment to the variables that makes P accept.

We will present a reduction from BP-SAT in the same vein as Backurs’
reduction from CNF-SAT [7] which shows the following to be true.

Theorem 4. There is a reduction from SAT on nondeterministic branching
programs on n variables, length T, and width W, to an instance of Edit-Distance
or LCS on two binary sequences of length N = 2n/2 ·TO(logW), and the reduction
runs in O(N) time.

Equivalently, the theorem above implies that if there is a strongly sub-
quadratic algorithm for Edit-Distance or LCS, BP-SETH is false. This has
much stronger consequences than if SETH were to be refuted. Theorem 4 has
the following corollary.

Corollary 5. [3] If Edit Distance and LCS on two binary sequences of length
N is in O(N2−ε) time for some ε > 0, then the complexity class ENP does not
have:

1. non-uniform 2o(n)-size boolean circuits

2. non-uniform o(n)-depth circuits of bounded fan-in

o(n1/2

3. non-uniform 2)-size nondeterministic branching programs

3.1.4 Matching Triangles

The ∆-Matching-Triangles problem and the Triangle-Collection problem ad-
dress the existence of tri-colored triangles within graphs. Both problems can
serve as the starting point for reductions that extend to answer many core ques-
tions in graph theory.

Definition 6. (Triangle-Collection) Given a graph G with colored nodes, is it
true that for all triples of distinct colors (a, b, c) there is a triangle (x, y, z) in G
in which x has color a, y has color b, and z has color c?

Definition 7. (∆-Matching-Triangles) Given a graph G with colored nodes, is
there a triple of distinct colors (a, b, c) such that there are at least ∆ triangles
(x, y, z) in G in which x has color a, y has color b, and z has color c? (Are there
∆ triangles with ”matching” colors?)

5

The O(n3) algorithm for these problems is trivial. However, no strongly
subcubic time algorithm for either has been found. With these definitions we
have the following theorem.

Theorem 6. Conjecture 6 implies that Triangle-Collection and ∆-Matching-
Triangles, with ω(1) < ∆ < no(1), on graphs with n nodes cannot be solved in
O(n3−ε) time, for any ε > 0 [5].

Not only does the above theorem give us a lower bound on important prob-
lems in graph theory, but the tightness of the lower bound allows for efficient
reductions to other, perhaps better-known problems. This theorem gives poten-
tially tight lower bounds for many problems within graph theory conditional on
a relatively weak conjecture. We give a proof of the reduction to ∆-Matching-
Triangles in 4.5.1.

3.1.5 Dynamic Graph Problems

We will explore further reductions from Triangle-Collection conditional on these
lower bounds to prove lower bounds for a large number of dynamic problems,
including Single-Source-Reachability (#SSR), Strongly Connected Components
(#SCC), Subgraph Connectivity (#SS-Sub-Conn), and Max-Flow.

Definition 8. (#SSR) Maintain a directed graph under insertions and deletions
of edges, and queries on whether there is a path from a given node s to some
node t

Definition 9. (#SCC) Maintain a directed graph under insertions and dele-
tions of edges, and queries on the number of strongly connected components.

Definition 10. (#SS-Sub-Conn) Maintain a directed graph and support turn-
ing nodes of and on, and querying whether there is a path from s to t containing
only ”on” nodes.

Definition 11. (Max-Flow) Maintain a directed graph under reweighting of
edges and querying of the maximum possible flow.

Several previous attempts have been made to prove conditional lower bounds
2

for these problems. A O(n o3− (1)) lower bound has been proved under 3-SUM
[11]. However, it is not known if this bound is tight, as it does not match current
upper bounds. Indeed, lower bounds of n1−o(1) have been proven under SETH
[6]. Higher lower bounds under 3-SUM using the aforementioned approach seem
unlikely, and no bounds have been shown previously under APSP. Abboud et
al. present new reductions from the Triangle-Conjecture under Conjecture 6 for
these problems [5].

Theorem 7. Conjecture 6 implies that any dynamic algorithm of #SSR, #SSC,
#SS-Sub-Conn, and Max-Flow requires either amortized n1−o(1) update or query
times, or n3−o(1) processing time.

Lower bounds for static variants on Max-Flow can also be proved using this
approach, although for the sake of space we do not present these here [5].

6

3.2 Existing Algorithms

3.2.1 An algorithm for Edit Distance

Edit Distance between two strings of length n can be computed in O(n2) time
using elementary algorithms. For example, here is an algorithm that reduces
the problem to the shortest path problem:

• On input x, y, define a subproblem X(i, j) to be the answer edit distance
between x[i : n] and y[j : n]

• Construct a graph on the lattice [0...n] × [0...n], such that an edge from
point a to point b corresponds to the assertion that X(a) ≤ X(b) + 1.

• Add all edges (i, j)→ (i+ 1, j), (i, j)→ (i, j + 1).

• For all i, j such that x[i] = y[j], add an edge (i, j)→ (i+ 1, j + 1).

• Compute the shortest path from (0, 0) to (n, n). This is the answer to
X(0, 0).

The proof of correctness of this algorithm is omitted, but here is a brief
sketch: Consider a sequence of edits to x that ends at y. Let it be sorted. Then
the lengths of the unmatched suffixes of x, y will correspond to subproblems as
defined in the algorithm. Therefore any sequence of edits corresponds to a path
through the above graph.

3.2.2 An algorithm for LCS

Longest Common Subsequence can be computed in O(n2) time using a similar
algorithm, where edges instead correspond to either assertions that X(i, j) ≥
X(i, j+1), X(i, j) ≥ X(i+1, j), or X(i, j) ≥ 1+X(i+1, j+1). The problem can
then be solved by evaluating X on all (i, j), in topological order (e.g. decreasing
i, j), starting with X(n, n) = 0.

3.2.3 An algorithm for Most Orthogonal Vectors

Most orthogonal vectors can be solved in O(n2) time using the trivial algorithm,
i.e. compute the inner product of every pair (αi, βj) ∈ α× β, and check if it is
less than r.

3.2.4 An algorithm for Matching Triangles

Both the Triangle-Collection and ∆-Matching-Triangles problems can be solved
in O(n3) time on input graph G = (V,E) with coloring χ by checking each triple
(x, y, z) of nodes in V .

4 Reductions

4.1 k-SAT to Most Orthogonal Vectors

We will prove Theorem 1.

7

Theorem 8. If Most-Orthogonal Vectors on n vectors in {0, 1}d can be solved
in T (n, d) time, then given a CNF formula on n variables and M clauses, we
can compute the maximum number of satisfiable clauses (MAX-CNF-SAT), in
O(T (2n/2,M) · logM) time.

Proof. [7] Given a CNF formula on n variables and M clauses, split the variables
into two sets of size n/2 and list all 2n/2 partial assignments to each set. Define
a vector v(α) for each partial assignment α which contains a 0 at coordinate
j ∈ [M] if α sets any of the literals of the j-th clause of the formula to true, and
1 otherwise. In other words, it contains a 0 if the partial assignment satisfies
the clause and 1 otherwise.

Now, observe that if α, β are a pair of partial assignments for the first and
second set of variables, then the inner product of v(α) and v(β) is equal to
the number of clauses that the combined assignment (α, β) does not satisfy.
Therefore, to find the assignment that maximizes the number of satisfied clauses,
it is enough to find a pair of partial assignments α, β such that the inner product
of v(α), v(β) is minimized. The latter can be easily reduced to O(logM) calls
to an oracle for Most-Orthogonal Vectors on N = 2n/2 vectors in 0, 1M with a
standard binary search.

Theorem 1 follows immediately.

4.2 Most Orthogonal Vectors to Edit Distance

The reduction was provided in Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false) [7]. We will outline the reduction
here.

4.2.1 Coordinate gadgets

We will first define two coordinate gadgets, CG1, CG2 as follows:{
(0l10l01l01l01l00l1 if x = 0

CG1(x) :=
(0l10l0{ 0l00l01l00l1 if x = 1

(0l10l00l01l01l00l1 if x = 0
CG2(x) :=

(0l11l01l01l01l00l1 if x = 1

These coordinate gadgets have the property that

l0 if x1 x2 = 0
EDIT (CG1(x1), CG2(x2)) =

{
·

.
3l0 otherwise

The coordinate gadgets will be used to construct vector gadgets.

4.2.2 Vector gadgets

We will define two vector gadgets, V G1 and V G2, as follows:

V G1(a) = Z1 ◦ L ◦ V0 ◦R ◦ Z2, V G2(b) = V1 ◦D ◦ V2,

8

where
Z1 = Z2 = 0l2 , V1 = V2 = V0 = 1l2 .

These vector gadgets have the property that

Es if x1 x2 = 0
EDIT (V G1(x1), V G2(x2)) :

{
≤ ·

.
= Eu otherwise

4.2.3 The reduction: Sequences of gadgets

We will now, given sets {α}i and {β}i, construct a sequence of gadgets as follows:
Let t = max(|V G1|, |V G2|) and T = 1000d

d
· t Define V G′k(x) = 2TV Gk(x)2T

for k ∈ {1, 2}, and let f ∈ {0, 1} be a vector with all 1s.
Finally, let

P1 = V G′1(α1) ◦ . . . ◦ V G′1(αn),

P = V G′ A
2 2(f)| |−1 ◦ V G′2(β1) ◦ . . . ◦ V G′2(β A 1

n) ◦ V G′2(f)| |− .

The construction ensures that, if there exists i, j so that αi · βj = 0, then
EDIT (P1, P2) ≤ X − (Eu − Es), and otherwise, EDIT (P1, P2) = X, for some
constant X.

Here is a sketch of the proof:

Proof. First, we claim that in the optimal alignment (i.e. isolate the edits that
are substitutions, and look at which characters of P1 become characters in P2),
each V G′1 gadget will be aligned (i.e., matched) with some V G′2 gadget (due to
the 2T padding of V G′k). The |B| + |A| − 2 unmatched V G′2 gadgets will be
deleted.

Each match αi, βj contributes EDIT (V G′1(αi), V G
′
2(βj)) to the total cost.

However, EDIT (V G′1(αi), V G
′
2(βj) = EDIT (V G1(αi), V G2(βj)). Recalling

the property of vector gadgets stated in 4.2.2, it is now clear that the matching
has total cost at most X − (Eu −Es) if and only if it matches some αi, βj with
αi · βj = 0.

Finally, given that some orthogonal αi, βj , it is possible to construct a match-
ing in which they are matched together:

• Match α1 . . . αi V−1 with i− 1 of the head sequence of G′2(f)

• Match αi with βj

• Match αi+1 . . . αn with n− i of the tail sequence of V G′2(f).

This is always possible, as the head and tail sequences of V G′2(f) have length
|A| − 1 each.

4.3 Most Orthogonal Vectors to LCS

The following reduction is from Quadratic-Time Hardness of LCS and other
Sequence Similarity Measures[1] We reduce to weighted LCS (WLCS), where
each symbol has a weight, and the goal is to pick a common subsequence with
maximum weight. It is easy to reduce WLCS to LCS.

9

4.3.1 Coordinate gadgets

Let the alphabet be Σ = {0, 1, 2, 3, 4, 5, 6}. Give weights w(4) = w(6) = 1,
w(5) = X = 100d.

Define {
5465 if α[i] = 0

CG1(α, i) =
545 otherwise

5645 if β[j] = 0
CG2(β, j) =

{
565 otherwise

These coordinate gadgets have the property that

2X + 1 if α[i] β[j] = 0
LCS(CG1(α, i), CG2(β, i)) =

{
·

.
2X otherwise

4.3.2 Vector gadgets

First, define R1, R2 to be the concatenation of coordinate gadgets.

R1(α) = CG1(α, 1) ◦ . . . ◦ CG1(α, n)

R2(β) = CGG(β, 1) ◦ . . . ◦ CG1(β, n)

Note that WLCS(R1(α), R2(β)) = d · 2X + (d− α · β). Then, let

V G1 = 1 ◦R1(α)

V G2 = R2(β) ◦ 1,

and give the weight w(1) = A = d · 2x+ (d− (r − 1)). Note that 1 is always a
common subsequence, so WLCS(V G1, V G2) ≥ A.

These vector gadgets have the property that

A+ 1 if α β r
WLCS(V G1(α), V G2(β)) :

{
≥ · ≤

.
= A otherwise

4.3.3 The reduction: Sequences of gadgets

Let V G′1(α) = 0 ◦ V G1(α) ◦ 2 and V G′2(β) = 0 ◦ V G2(β) ◦ 2 ◦ 3.
Let α1 . . . αn and β1 . . . βn be the given sets of vectors. Let f be a vector of

all ones. Then, let

P1 = 3|P2| ◦ V G′1(α1) ◦ . . . ◦ V G′1(αn)
n

◦ 3|P2|

P2 = 3V G′2(f) −1 ◦ V G′2(β) ◦ . . . ◦ V G′2(β) ◦ V G′2(f)n−1.

Set the weights w(3) = B = A2, w(0) = w(2) = C = B2. Then, these
sequences have the property that{

≥ n(2C +A) + 2nB + 1 if αi βj r
WLCS(P1, P2) :

· ≤
.

≤ n(2C +A) + 2nB otherwise

10

Thus, it suffices to solve WLCS(P1, P2) to determine if there exist αi, βj
that are r-close.

Because |P1|, |P2| are linear in n, we conclude that if a strongly subquadratic
algorithm exists for LCS, then a strongly subquadratic algorithm exists for Most
Orthogonal Vectors.

4.4 Branching Programs to Edit-Distance and LCS

In Simulating Branching Programs with Edit Distance and Friends [3], Abboud
et al. introduce a new reduction to Edit Distance and LCS that shows there is no
strongly subquadratic algorithm under much weaker assumptions than SETH.
Specifically, they define a reduction from the satisfiability of nondeterministic
branching programs to instances of either Edit Distance or LCS. They thus prove
that a strongly subquadratic algorithm for LCS would imply that BP-SAT can
be computed in time (2−δ)n time. This is an important departure from previous
work in this vein ([1], [7]), which gives reductions from k-SAT under the original
SETH. Unlike CNF formulas, which are fairly low in the hierarchy of richness
of representation, BPs are able to represent complex concepts such as linear-
algebraic operations and cryptographic primitives. The reductions presented
here are much more consequential. Abboud et al. [3] show that even mildly
subquadratic algorithms for LCS would have a large impact on lower bounds
for SAT.

4.4.1 BP-SAT to LCS

The full reduction is quite long, but for the sake of this paper we present a shorter
version. Given a branching program of length T and width W , a reduction to
LCS with an alphabet of size |Σ| = O(W log T) simplifies the presentation
while maintaining the spirit of the proof. However, a more robust reduction
with |Σ| = 2 can be found in the original paper [3].

Similar to the reduction from k-SAT to LCS, we define an intermediary
problem. On an input to BP-SAT on n variables, split the variables into two
sets X1 = {x1, ..., xn/2} and X2 = {xn/2+1, ..., xn}, and consider whether there

exist partial assignments a ∈ {0, 1}n/2 and b ∈ {0, 1}n/2 to these variables,
respectively, such that the original BP is satisfied. Solving BP-SAT is equivalent
to determining whether such a pair a, b exists.

Theorem 9. There is a constant c such that if LCS can be solved in time
S(N), then BP-SAT on n variables and programs of length T and width W can
be solved in S(2n/2 · T c logW) time.

Given a branching program P , and the corresponding function F , split the
input variables into X1 and X2. Deciding BP-SAT is equivalent to determining
if there exist some a, b ∈ {0, 1}n/2 such that F (a ◦ b) = 1. As with the previous
reductions from orthogonal vectors to LCS, we construct gadget sequences G(a)
and G(b) for every a, b such that for some integer Y , we have the following.

LCS(G(a),
=

G(b))

{
Y if F (a ◦ b) = 1

≤ Y − 1 otherwise

11

We then combine G(a) for all a ∈ {0, 1}n/2 into some A, and G(b) for all
b ∈ {0, 1}n/2 into some B, such that for some integer E we have

=
LCS(A,B)

{
E if F (a ◦ b) = 1 for some a, b

≤ E − 1 otherwise

We call on a lemma from Abboud et. al [2] to prove the existence of A and
B.

Lemma 10. Take function F{0, 1} → {0, 1}. If, given any a, b ∈ {0, 1}n/2, one
can construct gadget sequences G(a), G(b) of length L, L′ respectively such that
for some integer Y ,

LCS(G(a),
1

G

{
= Y if F (a =

(b))
◦ b)

≤ Y − 1 otherwise

Then, one can construct sequences A, B such of length 2n/2poly(L,L′) such that
for some integer E, {

= E if F (a ◦ b) = 1 for some a, b
LCS(A,B)

≤ E − 1 otherwise

Thus to prove Theorem 8, given branching program P of length T and
width W , we need only construct gadget sequences G, G of length TO(logW)
that satisfy the above property. Let T = 2t + 1 for simplicity for some t ≥ 0.
Let G(a) and G(b) represent the subsets of edges in P ; our goal is to decide if
there is some path from ustart to uacc. We can do so by guessing, recursively,
which node this path passes through in level 2t−k + 1 for integer k, k ≥ 1, and
splitting the BP into two BPs of half the length.

At each recursion level we have two nodes u ∈ L and v ∈ L , j − i = 2ki j ,
and we want to decide if there is some path from u to v. Denote the sequences

u,vfor a and b by RGk (a) and
u,v

RGk (b) respectively. We define these sequences
such that for some Yk,

u,vLCS(RGk (a),
u,v

RGk (b))

= Yk if on input a ◦ b, v is reachable from

 u in 2k steps

≤ Y − 1 otherwise

We have a base case k = 0, u and v are connected iff there is an edge from
u to v. The variable x(i) that corresponds to the existence of this edge must be
contained in either a and b; whichever sequence contains x(i) is assigned e if an
edge is present, and the other is assigned e regardless. Thus Y0 = 1. For k > 0,

u,vconstruct RGk (a) and RG
u,v

k (b) from each of the W choices of RGu,yk−1(a) and

RG
y,v

k−1(b), where y is some node on the layer in the middle of u and v. We have

G(a) = RGustart,uacc

t (a) and G(b) =
u ,u

RG
start acc

t (b), and have F (a ◦ b) = 1 iff
LCS(G(a), G(b)) = T .

Since each gadget will have length at most WO(t), we have sequences of at
most 2n/2 · TO(logW) by Lemma 10, completing the proof of Theorem 9.

12

4.5 Matching Triangles Problem

In Matching triangles and basing hardness on an extremely popular conjecture,
Abboud et al. [5] attempt a different approach to conditional lower bounds in
showing that the currently conjectured bounds hold for several graph problems
if any one of three conjectures hold. Namely, the 3-SUM conjecture, the APSP
conjecture, and SETH (see Conjecture 6).

4.5.1 3-SUM and APSP to Matching Triangles

We first show a reduction from 3-SUM and APSP via an intermediate problem,
EW-Triangle.

Definition 12. (EW-Triangle) Given a graph G = (V,E) with integer edge
weights w : E → [−nc, nc], determine if there is a triangle (a, b, c) of total
weight w(x, y) + w(x, z) + w(y, z) = 0.

EW-Triangle cannot be solved in time less than n3−o(1) unless both 3-SUM
[12] and APSP [13] are false. The basic idea in the reduction from EW-Triangles
is to produce a set of no(1) mappings from integers [−nc, nc] to vectors in [−p, p]d,
where (p/3)d > nc so that three numbers sum to zero if and only if the three
corresponding vectors sum to some target vector t.

Lemma 11. For any integers n, c, d, p ≥ 1 such that p ≥ 3ndc/de, there is a set
of s = 2O(d) mappings f , ..., f : [−nc, nc d

1 s] → [−p/3, p/3] and s target vectors
t d c c
1, ..., ts ∈ [−p, p] such that for any three numbers x, y, z ∈ [−n , n] : x+y+z =

0 if and only if, for some i ∈ [s], fi(x) + fi(y) + fi(z) = ti.

Full proof of Lemma 11 can be found in a separate paper by Abboud, Lewi
and Williams [4]. From this lemma we are able to define the following reduction
from EW-Triangle to ∆-Matching-Triangles.

Lemma 12. An instance of EW-Triangle on n nodes, m edges, and edge weights
in [−nc, nc] can be reduced to s = 2O(∆) instances of Matching-Triangles on
O(n · nc/∆ ·∆) nodes and O(mnc/∆∆) edges in linear time.

Proof. On input G = (V,E), V = A ∪B ∪ C, with edge weights in [−nc, nc] to
EW-Triangle, construct unweighted graph G′ = (V ′, E′) with O(n · nc/∆ · ∆)
nodes and coloring χ : Vi

′ → [n] as follows.

From Lemma 11, we take d = ∆, p = O(ndc/∆e) to construct s = 2O(∆)

mappings from integers to vectors. For each i ∈ [s], we use appropriate mapping
fi to construct G′i with nodes Vi

′ = A′i ∪Bi′ ∪Ci′. For each node a ∈ A, we add
d nodes a1, ..., ad to A′i with color a. We construct Bi

′ and Ci
′ by adding, for

each b ∈ B and c ∈ C, 2 · 2p nodes bj,x and cj,x to B and C respectively, where
j ∈ [d] and x ∈ [−p, p]. We assume that each v ∈ V = A ∪ B ∪ C is assigned a
unique number in [3n].

We add the following edges to our graph:

A to B : For each edge (a, b) ∈ E, where (a, b) ∈ A×B, and every j ∈ [d], place
an edge between aj and bj,x, where x = fi(w(a, b))[j] (in other words, the
value of the mapping of w(a, b) at dimension j).

13

B to C : For each edge (b, c) ∈ E, where (b, c) ∈ B ×C, and every j ∈ [d]: for
each x ∈ [−p, p], if y = x + fi(w(b, c))[j] ∈ [−p, p], add an edge between
bj,x and cj,y.

C to A For each edge (c, a) ∈ E, where (c, a) ∈ C×A, and every j ∈ [d], place
an edge between cj,x and aj , where x = ti[j]− fi(w(c, a))[j]

This constructions gives us nd + 2 · nd(2p) = O(n1+c/∆∆) nodes, and 2md +
2mdp) = O(mnc/∆∆) edges, and 3n colors. We claim that if one of these 2O(∆)

instances of ∆-Matching-Triangles accepts, G contains a triangle of weight 0.

Claim 13. There is a triangle (a, b, c) ∈ A × B × C of weight 0 iff for some
i ∈ [s], there are at least ∆ triangles in G′i with colors (a, b, c).

Proof. For the first direction, take any triangle (a, b, c) ∈ A×B × C in G such
that w(a, b) + w(b, c) + w(c, a) = 0. By Lemma 11, this means fi(w(a, b)) +
fi(w(b, c)) + fi(w(c, a)) = ti for some i ∈ [s]. By our construction, for each
dimension j ∈ [d], we clearly have triangle aj , bjx , cj,y ∈ G′i, for x = fi(w(a, b))[j]
and y = x + fi(w(b, c))[j], since we have y = ti[j] − fi(w(c, a))[j]. Given our
assigned coloring, we have d = ∆ triangles of colors (a, b, c) in Gi’.

For the second direction, take any ∆ triangles in G′i for some i ∈ [s]. Each
triangle must contain colors a, b, and c, since each of A′i, Bi

′, and Ci
′ constitute

independent sets under our construction. For each j ∈ [d], aj can have at most
one edge to some unique bj,x, and one edge to some unique cj,y. This means
for each j ∈ [d], there is at most one triangle with coloring (a, b, c) in G′i, which
exists iff fi(w(a, b))[j] + fi(w(b, c))[j] = ti[j]− fi(w(c, a))[j]. Thus, if there are
∆ such triangles, we have vectors fi(w(a, b)) +fi(w(b, c)) +fi(w(c, a)) = ti, and
so w(a, b) + w(b, c) + w(c, a) = 0.

Corollary 14. If there is an algorithm which solves ∆-Matching-Triangles on
an n-node graph in time O(n3−ε) for an ε > 0, w(1) < ∆(n) < o(log n), we can
solve EW-Triangle in O(n3−ε+o(1)) time, and the APSP and 3-SUM conjectures
are both false.

4.5.2 SETH to Matching Triangles

We next give a reduction to ∆-Matching-Triangles under SAT that will complete
the proof for a reduction under Conjecture 6. This reduction is similar to those
previously mentioned to prove lower bounds conditional on SETH. Unlike the
k-SAT to Most-Orthogonal-Vectors reduction shown in Section 4.1, however,
this reduction splits the variables into three groups, not two.

Lemma 15. If ∆-Matching-Triangles can be solved on N -node graphs in time
O(N∆c), then CNF-SAT on n variables and m clauses can be solved in time
O((∆2n/3+m/3∆)c∆).

Proof. Given a CNF formula F on n variables and m clauses, we construct
graph G as follows. Split the variables up into three groups, U1, U2, and U3,
each of size n/3, and enumerate over all N = 2n/3 partial assignments. Split
the clauses up into 3∆ groups, C1, ..., C3∆, each of size m/3∆. For each partial
assignment αi, group of clauses C3k+i, and bit string si ∈ {0, 1}m/3∆ (where
each bit denotes membership of a given clause in C3k+i), add vertex vαi,k,si ∈ Vi.
Assign each partial assignment a different color. Place an edge between nodes

14

vαi,k,si and vαi+1,k,si+1 if αi+1 satisfies the subset si of C3k+i, and αi, αi+1

satisfy all the clauses of C3k+i+1 not included in subset si+1.
We claim that for all k ∈ [∆], and each triple α1, α2, α3 of partial assign-

ments, there is a triangle among some vertices vα1,k,si , vα2,k,si , vα3,k,si for
1 2 3

some i1, i2, and i3 iff they satisfy all clauses in C3k+1, C3k+ 2, C3k+3. If there
is such a triangle vα1,k,s1 , vα2,k,s2 , vα3,k,s3 , then α2 must satisfy the subset s1,
and α1 and α3 must satisfy the remaining vertices in C + 3k + 1. The same
follows for C+3k + 2 and C+3k + 3, because there are edges between all three
vertices. If α2 satisfies the subset of clauses in s1, then vα1,k,s1 must have an
edge to vα2,k,sj for all j. The same follows for i = 2 and i = 3. Thus all clauses
are satisfied by some partial assignment. Since each partial assignment has a
different coloring, and there are no edges between vαi, , for any i, it follows∗ ∗
that there will be ∆ triangles with the same three colors (a, b, c) iff all clauses
are satisfied for each k ∈ [∆]. This means that, given a O(N c∆) algorithm for
∆-Matching-Triangles, we can solve CNF-SAT in time O((∆2n/2+m/2∆)c∆).

This, along with the sparsification lemma [8], gives the following corollary.

Corollary 16. If there is an algorithm to solve ∆-Matching-Triangles on N -
node graphs in O(N3−ε) time for any ε > 0, any ω(1) < ∆(N) < No(1), we can
solve k-SAT in O(2n(1−ε/6)) time for every k ≥ 3, and SETH is false.

This reduction, in combination with that from EW-Triangle proves a lower
bound of n3−o(1) for Delta-Matching-Triangles conditional on Conjecture 6.

4.5.3 Triangle-Collection to Dynamic Graph Problems

We give a reduction from a restricted version of Triangle-Collection to prove
lower bounds on dynamic graph problems. While we do not prove it here,
this restricted version can be proven to also have n3−o(1) lower bounds under
Conjecture 6 [5].

Definition 13. (Triangle-Collection∗) Given an undirected tripartite colored
graph G with partitions A,B,C of the following form:

1. A contains n∆ nodes denoted aj where a ∈ [n] and j ∈ [∆] so that aj is
colored with color a.

2. B and C contain n∆p nodes each, denoted by bj,x and cj,x where b, c ∈ [n],
j ∈ [∆], and x ∈ [p] so that bj,x and cj,x are colored b and c, respectively.

3. For each node aj in A and colors b, c, there is exactly one edge of the form
{aj , bj,x} and exactly one edge of the form {aj , cj,x}, for some x, y ∈ [p].

4. A node bj,x in B can only be connected to nodes of the form cj,y.

Is it true that for all triples of distinct colors (a, b, c) there is a triangle (x, y, z)
in G such that x has color a, y has color b, and z has color c?

Given this reduced version of Triangle-Collection, we have the following
lemma on updates and queries of dynamic graphs:

Lemma 17. Triangle-Collection∗ can be reduced to Õ(n2) updates and queries
of #SSR, #SCC, #SS-Sub-Conn, or Max-Flow on a dynamic graph of O(n)
nodes.

15

Proof. (#SSR) Given an input graph G to Triangle-Collection∗, construct G′

as follows: direct all edges between nodes in B and C from B to C; remove all
nodes in A; create a source node s and a target node tc for each color c in C. We
can then perform the following operations: first, for every j ∈ [∆], add an edge
between cj,x to tc where (aj , cj,x) is an edge in G; second, we check, for every
j ∈ [∆], if for all colors b in B and every edge (s, bj,x) such that (aj , bj,x) is an
edge in G, we can reach ∆+2n from s. After each b, we remove all added edges
before moving onto the next color. From the construction we can see that, for
any pair (aj , bj,x) in the second stage, we can reach fewer than ∆ + 2n nodes iff
there is at least one tc that we cannot reach from aj . In other words, we find
such a pair iff there is no triangle with this coloring, in which case we can safely
reject.

(Max-Flow) The algorithm is identical for that of #SRR, except that we
connect each tc to a single output node t, and weight all other edges n, and
check that the maximum flow is equal to the number of nodes tc.

(#SS-Subgraph-Connectivity) Instead of adding edges as we did in #SSR,
we instead turn on the corresponding nodes on any given round, allowing us to
again compute whether or not we can reach every tc from s for a given coloring.

(#Strongly-Connected-Components) Add two new nodes, xb and xc, to
which we connect each node in B and C respectively bidirectionally. At the
first stage, connect each cj,x to tc instead of xc; in the second stage, disconnect
each bj,x from xb and instead connect it bidirectionally to s. Thus there is a
path from a to every tc iff, for every coloring, there are precisely 3 strongly
connected components: xb, xc, and the rest of the graph.

5 Comparison of Methods

While Backurs and Indyks’ original result was quite impressive, the strength
of the assumption in SETH is a major weakness. In constrast, the reduction
from Branching Programs by Abboud et al. proves identical conditional lower
bounds under much weaker assumptions. Arguably, this reduction makes better
use of the full power of Edit-Distance and LCS, and thus is a nice follow-up to
the work presented in the original paper.

As somewhat of a departure from this, Abboud et al. produce an alternative
improvement to the original conditional bounds on SETH. Namely, proving
identical lower bounds conditional on multiple conjectures. This strengthens
any conclusions drawn from reductions under any one conjecture. Furthermore,
since they draw on conjectures that span multiple fields, the probability that
researchers across all three of these fields have failed to produce even marginally
better algorithms for any of these problems makes the idea that at least one
conjecture is true all the more credible.

These two tangentially related approaches beg the question of what, then,
is the most fruitful strategy to pursue in attempting to prove conditional poly-
nomial lower bounds. The reductions under C-SETH prove very wide-ranging
consequences for higher complexity classes should a faster Edit-Distance algo-
rithm be found. However, the conjecture made in the ∆-Matching-Triangles
reductions is still fairly weak, even if it does not necessarily prove circuit lower
bounds for problems in ENP. Additionally, there is a wide range of further
reductions stemming from these original proofs. Thus, while the former has

16

a large impact on the field of complexity theory should faster algorithms for
Edit-Distance or LCS be found, the latter provides a good argument that the
current upper bounds for a large range of graphs problems may be tight, which
has practical consequences in the applications of such problems.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
Quadratic-time hardness of lcs and other sequence similarity measures.
arXiv preprint arXiv:1501.07053, 2015.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight
hardness results for lcs and other sequence similarity measures. In Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 59–78. IEEE, 2015.

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Ryan Williams. Simulating branching programs with edit distance
and friends or: A polylog shaved is a lower bound made. arXiv preprint
arXiv:1511.06022, 2015.

[4] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining
edges. In Algorithms-ESA 2014, pages 1–12. Springer, 2014.

[5] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Match-
ing triangles and basing hardness on an extremely popular conjecture. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pages 41–50. ACM, 2015.

[6] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures im-
ply strong lower bounds for dynamic problems. In Foundations of Computer
Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 434–443.
IEEE, 2014.

[7] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in
strongly subquadratic time (unless seth is false). In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
51–58. ACM, 2015.

[8] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality
between clause width and clause density for sat. In Computational Com-
plexity, 2006. CCC 2006. Twenty-First Annual IEEE Conference on, pages
7–pp. IEEE, 2006.

[9] Evgeny Dantsin and Alexander Wolpert. On moderately exponential time
for sat. In Theory and Applications of Satisfiability Testing–SAT 2010,
pages 313–325. Springer, 2010.

[10] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In
Computational Complexity, 1999. Proceedings. Fourteenth Annual IEEE
Conference on, pages 237–240. IEEE, 1999.

17

[11] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems.
In Proceedings of the forty-second ACM symposium on Theory of comput-
ing, pages 603–610. ACM, 2010.

[12] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. In Proceedings of the forty-first annual ACM sympo-
sium on Theory of computing, pages 455–464. ACM, 2009.

[13] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences
between path, matrix and triangle problems. In Foundations of Computer
Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 645–654.
IEEE, 2010.

18

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

