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Lecture 1


Estimation theory. 

1.1 Introduction 

Let us consider a set X (probability space) which is the set of possible values that � 
some random variables (random object) may take. Usually X will be a subset of ,� 
for example {0, 1}, [0, 1], [0,≤), , etc. 

I. Parametric Statistics. 
We will start by considering a family of distributions on X : 

� ν , χ ⊆ �}, indexed by parameter χ. Here, � is a set of possible parameters • {
and probability � ν describes chances of observing values from subset of X, i.e. 
for A ∼ X, � ν (A) is a probability to observe a value from A. 

• Typical ways to describe a distribution: 

– probability density function (p.d.f.), 

– probability function (p.f.), 

– cumulative distribution function (c.d.f.). 

For example, if we denote by N(ϕ, δ2) a normal distribution with mean ϕ and variance � 
δ2, then χ = (ϕ, δ2) is a parameter for this family and � = × [0,≤). 

Next we will assume that we are given X = (X1, · · · , Xn) - independent identically 
distributed (i.i.d.) random variables on X , drawn according to some distribution � ν0 

from the above family, for some χ0 ⊆ �, and suppose that χ0 is unknown. In this 
setting we will study the following questions. 

1. Estimation Theory. 

Based on the observations X1, · · · , Xn we would like to estimate unknown pa­
rameter χ0, i.e. find χ̂ = n) such that χ̂ approximates χ0. In this χ̂(X1, · · · , X
case we also want to understand how well χ̂ approximates χ0. 

1 



2 LECTURE 1. ESTIMATION THEORY. 

2. Hypothesis Testing. 

Decide which of the hypotheses about χ0 are likely or unlikely. Typical hypothe­
ses: 

• χ0 = χ1? for some particular χn? 

• χ0 � χ1 

• χ0 = ⇒ χ1 

Example: In a simple yes/no vote (or two candidate vote) our variable (vote) 
can take two values, i.e. we can take the space X = {0, 1}. Then the distribution is 
described by 

� (1) = p, � (0) = 1 − p 

for some parameter p ⊆ � = [0, 1]. The true parameter p0 is unknown. If we conduct 
a poll by picking n people randomly and if X1, · · · , Xn are their votes then: 

1.Estimation theory. What is a natural estimate of p0? 

#(1∈s among X1, · · · , Xn) 
p̂ = ∩ p0 

n 
How close is p̂ to p0? 

2. Hypothesis testing. How likely or unlikely are the following: 
1 • Hypothesis 1: p0 > 
2 

1 • Hypothesis 2: p0 < 
2 

II. Non-parametric Statistics 
In the second part of the class the questions that we will study will be somewhat 

different. We will still assume that the observations X = (X1, · · · , Xn) have unknown 
distribution � , but we won’t assume that � comes from a certain parametric family 

� ν , χ ⊆ �}. Examples of questions that may be asked in this case are the following: {
• Does � come from some parametric family { � ν, χ ⊆ �}? 

• Is � = � 0 for some specific � 0? 

If we have another sample X ∈ = (X ∈
m) then, ∈

1, · · · , X
Do X and X ∈ have the same distribution?
•


If we have paired observations (X1, Y1), · · · , (Xn, Yn):


• Are X and Y independent of each other? 

• Classification/regression problem: predict Y as a function of X; i.e., 

Y = f(X) + small error term . 



Lecture 2


2.1 Some probability distributions. 

Let us recall some common distributions on the real line that will be used often in 
this class. We will deal with two types of distributions: 

1. Discrete 

2. Continuous 

Discrete distributions. 
Suppose that a set X consists of a countable or finite number of points, 

.X = {a1, a2, a3, · · ·}

Then a probability distribution � on X can be defined via a function p(x) on X with 
the following properties: 

1. 0 ∀ p(ai) ∀ 1, 

2. 
�∗ 

i=1 p(ai) = 1. 

p(x) is called the probability function. If X is a random variable with distribution � � 
then p(ai) = � (ai) is a probability that X takes value ai. Given a function � : X ≈ , 
the expectation of �(X) is defined by 

∗
� � 

�(X) = �(ai)p(ai) 
i=1 

(Absolutely) continuous distributions. � 
Continuous distribution � on is defined via a probability density function � � ∗

(p.d.f.) p(x) on such that p(X) → 0 and p(X)dx = 1. If a random vari-−∗
able X has distribution � then the chance/probability that X takes a value in the 

3




4 LECTURE 2. 

interval [a, b] is given by 
� b 

� (X ⊆ [a, b]) = p(x)dx. 
a

� 
Clearly, in this case for any a ⊆ we have � (X = a) = 0. Given a function� 

, the expectation of �(X) is defined by � : X ≈ 

� 
� ∗ 

�(X) = �(x)p(x)dx. 
−∗ 

Notation. The fact that a random variable X has distribution � will be denoted 
by X ∩ � . 

Example 1. Normal (Gaussian) Distribution N (ϕ, δ2) with mean ϕ and variance � 
δ2 is a continuous distribution on with probability density function: 

1 (x−�)2 

p(x) = for x ⊆ (−≤, ≤).∞
2νδ

e− 
2�2 

Normal distribution often describes continuous random variables that can be af­
fected by a sum of many independent factors, for example, person’s height or weight, 
fluctuations of stock market, etc. In this case, the reason for having normal distribu­
tion lies in the Central Limit Theorem. 

Example 2. Bernoulli Distribution B(p) describes a random variable that can 
take only two possible values, i.e. = {0, 1}. The distribution is described by a X
probability function 

p(1) = � (X = 1) = p, p(0) = � (X = 0) = 1 − p for some p ⊆ [0, 1]. 

Example 3. Exponential Distribution E(ϕ) is a continuous distribution with 
p.d.f. � 

ϕe−ϕx x 0, 
p(x) = 

→
0 x < 0. 

Here, ϕ > 0 is the parameter of the distribution. 
This distribution has the following nice property. If a random variable X ∩ E(ϕ) 

then probability that X exceeds level t for some t > 0 is 
� ∗ 

� (X → t) = � (X ⊆ [t, ≤)) = ϕe−ϕxdx = e−ϕt . 
t 

For s > 0, the probability that X will exceed level t + s given that it exceeded level 
t can be computed as follows: 

� (X t + s, X t) � (X t + s)� (X t + s X t) = 
→ → 

= 
→→ | → 

� (X t) � (X t)→ → 

= e−ϕ(t+s) /e−ϕt = e−ϕs = � (X s),→ 
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i.e. 
� (X t + s X t) = � (X s).→ | → → 

In other words, if we think of X as a lifetime of some object in some random con­
ditions, then this property means that the chance that X will live longer then t + s 
given that it lived longer than t is the same as the chance that X lives longer than 
t in the first place. Or, if X is “alive” at time t then it is like new, so to speak. 
Therefore, some natural examples that can be decribed by exponential distribution 
are the life span of high quality products, or soldiers at war. 

Example 4. Poisson Distribution �(∂) is a discrete distribution with 

= {0, 1, 2, 3, . . .},X 

∂k 

p(k) = � (X = k) = e−� for k = 0, 1, 2, , . . . 
k! 

Poisson distribution could be used to describe the following random objects: the 
number of stars in a random area of the space; number of misprints in a typed page; 
number of wrong connections to your phone number; distribution of bacteria on some 
surface or weed in the field. All these examples share some common properties that 
give rise to a Poisson distribution. Suppose that we count a number of random objects 
in a certain region T and this counting process has the following properties: 

1. Average number of objects in any region S ∼ T is proportional to the size of S,
� 

i.e. Count(S) = ∂ S . Here S denotes the size of S, i.e. length, area, volume, | | | |
etc. Parameter ∂ > 0 represents the intensity of the process. 

2. Counts on disjoint regions are independent. 

3. Chance to observe more than one object in a small region is very small, i.e. 
� (Count(S) → 2) becomes small when the size S gets small. | | 

We will show that these assumptions will imply that the number of objects in the 
region T, Count(T ), has Poisson distribution �(∂ T ) with parameter ∂ T .| | | |

0 T/n T 

X1 X2 . . . . . . . Xn − Counts on small subintervals 

Figure 2.1: Poisson Distribution 

For simplicity, let us assume that the region T is an interval [0, T ] of length T. Let 
us split this interval into a large number n of small equal subintervals of length T/n 
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and denote by Xi the number of random objects in the ith subinterval, i = 1, . . . , n. 
By the first property above, 

� ∂T 
Xi = . 

n 
On the other hand, by definition of expectation 

� � 
Xi = k � (Xi = k) = 0 + � (Xi = 1) + πn, 

k�0 

where πn = 
� 

k�2 k � (Xi = k), and by the last property above we assume that πn 

becomes small with n, since the probability to observe more that two objects on the 
interval of size T /n becomes small as n becomes large. Combining two equations 
above gives, � (Xi = 1) ∅ ∂ T . Also, since by the last property the probability that 

n 
any count Xi is → 2 is small, i.e. 

� T � 
� (at least one Xi → 2) ∀ no ≈ 0 as n ≈ ≤, 

n 

we can write, 
⎜ 

n 
�� ∂T �k� ∂T �n−k 

� (Count(T ) = X1 + + Xn = k)	 1 −· · · ∅ 
k n n 

(∂T )k 

e−�T≈ 
k! 

Example 5: Uniform Distribution U [0, χ] has probability density function 
� 

1 

p(x) =	 ν , x ⊆ [0, χ], 
0, otherwise. 

Finally, let us recall some properties of normal distribution. If a random variable 
X has normal distribution N (ϕ, δ2) then the r.v. 

Y = 
X − ϕ ∩ N (0, 1)

δ 

has standard normal distribution. To see this, we can write, 

�	 1 (x−�)2 

δ 
⊆� 

� X − ϕ 
[a, b] = � (X ⊆ [aδ + ϕ, bδ + ϕ]) = 

� bπ+ϕ 

aπ+ϕ 

∞
2νδ

e− 
2�2 dx 

� b 2 y1 
2= 

a 

∞
2ν

e− dy, 
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where in the last integral we made a change of variables y = (x − ϕ)/δ. This, of 
course, means that Y ∩ N (0, 1). The expectation of Y is 

2� 
� ∗ 1 y 

2Y = y ∞
2ν

e− dy = 0 
−∗ 

� 
since we integrate odd function. To compute the second moment Y 2 , let us first 

2 

2note that since ≥1
2α 

e− y 
is a probability density function, it integrates to 1, i.e. 

2
� ∗ 1 y 

21 = dy. ∞
2ν

e− 

−∗ 

If we integrate this by parts, we get, 

2
� ∗ 1 y y∗ 2 

2 21 = dy = ∞1

2ν
ye− y 

2

2 

�
�
� � ∗ 

∞y

2ν 
(−y)e− dy 

−∗ 

∞
2ν

e− 

−∗ 
− 

−∗ 
21 

Y 22= 0 + 
� ∗ 

y 2 ∞
2ν

e− y 

dy = 
� 

. 
−∗ 

� 
Thus, the second moment Y 2 = 1. The variance of Y is 

� � 
Var(Y ) = Y 2 − ( Y )2 = 1 − 0 = 1. 
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3.1 Method of moments. 

Consider a family of distributions { � ν : χ ⊆ �} and and consider a sample X = 
(X1, . . . , Xn) of i.i.d. random variables with distribution � ν0 , where χ0 ⊆ �. We 
assume that χ0 is unknown and we want to construct an estimate χ̂ = χ̂ n)n(X1, · · · , X
of χ0 based on the sample X. 

Let us recall some standard facts from probability that we be often used through­
out this course. 

• Law of Large Numbers (LLN): 

If the distribution of the i.i.d. sample X1, . . . , Xn is such that X1 has finite 
� 

expectation, i.e. X1 < ≤, then the sample average | | 

¯ X1 + . . . + Xn � 
Xn =	 X1 

n 
≈ 

converges to the expectation in some sense, for example, for any arbitrarily 
small π > 0, 

�¯� ( Xn − X1 > ε) ≈ 0 as n ≈ ≤.| | 
Convergence in the above sense is called convergence in probability. 

Note. Whenever we will use the LLN below we will simply say that the av­
erage converges to the expectation and will not mention in what sense. More 
mathematically inclined students are welcome to carry out these steps more 
rigorously, especially when we use LLN in combination with the Central Limit 
Theorem. 

• Central Limit Theorem (CLT): 

If the distribution of the i.i.d. sample X1, . . . , Xn is such that X1 has finite 
� 

expectation and variance, i.e.	 | X1

� 

| < ≤ and Var(X) < ≤, then


¯
∞
n(Xn − X1) ≈ d N(0, δ2) 

8 
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δ
converges in distribution to normal distribution with zero mean and variance 

2 , which means that for any interval [a, b], 

2 
¯ � 1 x 

� 
�∞

n(Xn − X1) ⊆ [a, b] 
� 
≈ 

� 

a

b 

∞
2νδ

e− 
2�2 dx. 

Motivating example. Consider a family of normal distributions 
� {N(ϕ, δ2) : ϕ ⊆ , δ2 .→ 0}

Consider a sample X1, . . . , Xn ∩ N(ϕ0, δ0
2) with distribution from this family and 

suppose that the parameters ϕ0, δ0 are unknown. If we want to estimate these pa­
rameters based on the sample then the law of large numbers above provides a natural 
way to do this. Namely, LLN tells us that 

�¯ϕ̂ = Xn X1 = ϕ0≈ as n ≈ ≤ 

and, similarly, 

X1
2 + . . . + X2 

� �n ≈ X2 = Var(X) + X2 = δ0
2 + ϕ2 

0.1 n 

These two facts imply that 

X1
2 + 

n 
+ X2 

− 
� X1 + 

n 
+ Xn 

�2 
≈ 

� 
X2 − ( 

� nδ2ˆ = 
· · · · · ·

X)2 = δ0
2 . 

ϕ and ˆ 0It, therefore, makes sense to take ˆ δ2 as the estimates of unknown ϕ0, δ
2 since 

by the LLN for large sample size n these estimates will approach the unknown pa­
rameters. 

We can generalize this example as follows. � 
Suppose that the parameter set � ∼ and suppose that we can find a function � 

such that a function g : X ≈ 
� 

m(χ) = νg(X) : � ≈ Im(�) 
� 

has a continuous inverse m−1 . Here ν denotes the expectation with respect to the 
distribution � ν . Take 

χ = m−1(¯
+ g(Xn) 

�

ˆ g) = m−1
� g(X1 + · · ·

n 

as the estimate of χ0. (Here we implicitely assumed that ḡ is always in the set Im(m).) 
Since the sample comes from distribution with parameter χ0, by LLN we have 

� 
ḡ ≈ ν0 g(X1) = m(χ0). 



� 
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Since the inverse m−1 is continuous, this implies that our estimate 

χ̂ = m−1(ḡ) ≈ m−1(m(χ0)) = χ0 

converges to the unkown parameter χ0. 
� 

Typical choices of the function g are g(x) = x or x2 . The quantity Xk is called 
the kth moment of X and, hence, the name - method of moments. 

Example: Family of exponential distributions E(ϕ) with p.d.f. 
� 

ϕe−ϕx , x 0, 
p(x) = 

→
0, x < 0


Take g(x) = x. Then


� � 1

m(ϕ) = ϕg(X) = ϕX = . 

ϕ 

( 1 is the expectation of exponential distribution, see Pset 1.) Let us recall that we 
ϕ 

can find inverse by solving for ϕ the equation 

1 
m(ϕ) = λ, i.e. in our case = λ. 

ϕ 

We have, 
1 

ϕ = m−1(λ) = . 
λ 

Therefore, we take 
1¯ϕ = m−1(¯ˆ g) = m−1(X) = 
X̄ 

as the estimate of unkown ϕ0. 
Take g(x) = x2 . Then 

� � 2 
m(ϕ) = ϕg(X2) = ϕX2 = . 

ϕ2 

The inverse is 
2 

ϕ = m−1(λ) = 
λ 

and we take 
2¯ˆ g) = m−1(X2) = ϕ = m−1(¯

X̄2 

as another estimate of ϕ0. 
The question is, which estimate is better? 
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1.	 Consistency. We say that an estimate χ̂ is consistent if χ̂ ≈ χ0 in probability 
.. We have shown above that by construction the estimate by method as n ≈ ≤

of moments is always consistent. 

2. Asymptotic Normality. We say that χ̂ is asymptotically normal if 
∞

n(χ̂ − χ0) ≈d N (0, δ2 )ν0 

where δ2 � is called the asymptotic variance of the estimate χ̂.ν0 

Theorem. The estimate χ̂ = m−1(ḡ) by the method of moments is asymptotically 
normal with asymptotic variance 

δ2 V arν0 (g) 
= ν0 (m∈(χ0))2 

. 

Proof. Writing Taylor expansion of the function m−1 at point m(χ0) we have 

g) = m−1(m(χ0)) + (m−1)∈(m(χ0))(¯
(m−1)∈∈(c)

(¯m−1(¯	 g − m(χ0)) + g − m(χ0))
2 

2! 

where c ⊆ [m(χ0), ḡ]. Since m−1(m(χ0)) = χ0, we get 

g) − χ0 = (m−1)∈(m(χ0))(¯
(m−1)∈∈(c)

)(¯m−1(¯	 g − m(χ0) + g − m(χ0 )
2 

2! 

Let us prove that the left hand side multiplied by 
∞

n converges in distribution to 
normal distribution. 

g) − χ0) = (m−1)∈(m(χ0)) 
∞

n(¯	 g − m(χ0)))
2

∞
n(m−1(¯ g − m(χ0))+

(m−1)∈∈(c) 1
(
∞

n(¯
� ⎛� � 2! 

∞
n � ⎛� � 

(3.1) 
Let us recall that 

+ g(Xn) �g(X1) + · · ·
ḡ =	 , g(X1) = m(χ0 ). 

n 

Central limit theorem tells us that 
∞

n(ḡ − m(χ0) ≈ N (0, Varν0 (g(X1))) 

where convergence is in distribution. First of all, this means that the last term in 
(3.1) converges to 0 (in probability), since it has another factor of 1/

∞
n. Also, since 

from calculus the derivative of the inverse 

1 1 
(m−1)∈(m(χ0)) = 

m∈(m−1(m(χ0))) 
= 

m∈(χ0) 
, 
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the first term in (3.1) converges in distribution to 

1 � V arν0 (g(X1)) 
� 

g) − χ0) ≈ N (0, Varν0 (g(X1))) = N 0,(m−1)∈(m(χ0))
∞

n(m−1(¯
m∈(χ0) (m∈(χ0))2 

What this result tells us is that the smaller 
V ar�0 (g) 

is the better is the estimate 
m� (ν0 ) 

χ̂ in the sense that it has smaller deviations from the unknown parameter χ0 asymp­
totically. 



� 

Lecture 4


Let us go back to the example of exponential distribution E(ϕ) from the last lecture 
and recall that we obtained two estimates of unknown parameter ϕ0 using the first 
and second moment in the method of moments. We had: 

1. Estimate of ϕ0 using first moment: 

� 1 1 
g(X) = X, m(ϕ) = ϕg(X) = , ϕ1 = m−1(¯ˆ g) = ¯ . 

ϕ X 

2. Estimate of ϕ using second moment: 

� 2 2 
g(X) = X2 , m(ϕ) = ϕg(X2) = 

ϕ2 
, ϕ2 = m−1(¯ˆ g) = ¯ . 

X2 

How to decide which method is better? The asymptotic normality result states: 
� Varν0 (g(X))� 

g) − χ0) ≈ N 0, .
∞

n(m−1(¯
(m∈(χ0))2 

It makes sense to compare two estimates by comparing their asymptotic variance. 
Let us compute it in both cases: 

1. In the first case: 
1 

Varϕ0 (g(X)) Varϕ0 (X) ϕ2 

= = 0 = ϕ2 

(m∈(ϕ0))2 (− 
ϕ
1 
2 )2 (− 

ϕ
1 
2 )2 0. 

0 0 

In the second case we will need to compute the fourth moment of the exponential 
distribution. This can be easily done by integration by parts but we will show a 
different way to do this. 

The moment generating function of the distribution E(ϕ) is: 

� 
∗ 

tk 

�(t) = ϕe tX = 
� ∗ 

e txϕe−ϕxdx = 
ϕ 

= 
� 

ϕk 
, 

0 ϕ − t 
k=0 

13 
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where in the last step we wrote the usual Taylor series. On the other hand, writing 
the Taylor series for etX we can write, 

∗
� � 

∗ � tk 
� 

�(t) = ϕe tX = ϕ 

� (tX)k 

= ϕXk . 
k! k! 

k=0 k=0 

Comparing the two series above we get that the kth moment of exponential distribu­
tion is 

� k! 
ϕXk = . 

ϕk 

2. In the second case: 

� 4! 
Varϕ0 (g(X)) Varϕ0 (X

2) 
� 

ϕ0 X
4 − ( X2)2 

ϕ4 − ( 
ϕ
2 
2 )

2 
5ϕ0 0 0 ϕ2 = = = = 

(m∈(ϕ0))2 (−
ϕ
4 
3 )2 (−

ϕ
4 
3 )2 (−

ϕ
4 
3 )2 4 0 

0 0 0 

Since the asymptotic variance in the first case is less than the asymptotic variance 
in the second case, the first estimator seems to be better. 

4.1 Maximum likelihood estimators. 

(Textbook, Section 6.5) 
As always we consider a parametric family of distributions { � ν, χ ⊆ �}. Let 

f(X χ) be either a probability function or a probability density function of the dis­|
tribution � ν . Suppose we are given a sample X1, . . . , Xn with unknown distribution 

� ν , i.e. χ is unknown. Let us consider a likelihood function 

�(χ) = f(X1 χ) × . . . × f(Xn χ)| |

seen as a function of the parameter χ only. It has a clear interpretation. For example, 
if our distributions are discrete then the probability function 

f(x χ) = � ν (X = x)|

is a probability to observe a point x and the likelihood function 

�(χ) = f(X1 χ) × . . . × f(Xn χ) = � ν(X1) × . . . × � ν (Xn) = � n)| | ν (X1, · · · , X

is the probability to observe the sample X1, . . . , Xn. 
In the continuous case the likelihood function �(χ) is the probability density func­

tion of the vector (X1, · · · , Xn). 
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Definition: (Maximum Likelihood Estimator.) Let χ̂ be the parameter that 
maximizes �(χ), i.e. 

�(χ̂) = max �(χ). 
ν 

Then χ̂ is called the maximum likelihood estimator (MLE). 
To make our discussion as simple as possible, let us assume that the likelihood 

function behaves like shown on the figure 4.1, i.e. the maximum is achieved at the 
unique point χ̂. 

Distribution RangeΘ <− θ 

Best Estimator Here (at max. of fn.) 

Max. Pt. 
X1, ..., Xn 

ϕ(θ) 

θ̂ 

Figure 4.1: Maximum Likelihood Estimator (MLE) 

When finding the MLE it sometimes easier to maximize the log-likelihood function 
since 

�(χ) ≈ maximize ∈ log �(χ) ≈ maximize 

maximizing � is equivalent to maximizing log �. Log-likelihood function can be writ­
ten as 

n � 
log �(χ) = log f (Xi χ).|

i=1 

Let us give several examples of MLE. 
Example 1. Bernoulli distribution B(p). 

= {0, 1}, � (X = 1) = p, � (X = 0) = 1 − p, p ⊆ [0, 1].X 

Probability function in this case is given by 

f (x p) = 
p, x = 1, |
1 − p, x = 0. 

Likelihood function 

�(p) = f (X1 p)f (X2 p) . . . f (Xn p)
| |
0�s 

|
X1 +
# of +Xn)= p 1�s(1 − p)# of = p ···+Xn (1 − p)n−(X1+···
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and the log-likelihood function 

log �(p) = (X1 + + Xn) log p + (n − (X1 + + Xn)) log(1 − p).· · · · · ·
To maximize this over p let us find the critical point d log 

dp
�(p) = 0, 

1 1 
(X1 + + Xn) 

p 
− (n − (X1 + + Xn))

1 − p 
= 0.· · · · · ·

X
Solving this for p gives,


1 + + Xn
 ¯p = 
· · ·

= X 
n 

¯and therefore p̂ = X is the MLE.

Example 2. Normal distribution N (ϕ, δ2) has p.d.f.


1 (X−�)2


f (X|(ϕ, δ2)) =
∞
2νδ

e− 
2�2 .


likelihood function 
n 

1 (Xi−�)2 

�(ϕ, δ2) = 
⎭ 

∞
2νδ

e− 
2�2 . 

i=1 

and log-likelihood function 
n � 1 

log �(ϕ, δ2) = 
� 

log ∞
2ν 

− log δ − 
(X − ϕ)2 � 

2δ2 
i=1 

n
1 1 � 

= n log ∞
2ν 

− n log δ − (Xi − ϕ)2 . 
2δ2 

i=1 

We want to maximize the log-likelihood with respect to ϕ and δ2 . First, obviously, 
for any δ we need to minimize 

�
(Xi − ϕ)2 over ϕ. The critical point condition is 

d � 
(Xi − ϕ)2 = −2 

� 
(Xi − ϕ) = 0. 

dϕ 
¯Solving this for ϕ gives that ϕ̂ = X. Next, we need to maximize 

n
1 1 � 

¯n log ∞
2ν 

− n log δ − (Xi − X)2 

2δ2 
i=1 

over δ. The critical point condition reads, 
n 1 � 

¯+ (Xi − X)2 = 0 −
δ δ3 

and solving this for δ we get 
n 

δ2 1 � 
¯ˆ = (Xi − X)2 

n 
i=1 

is the MLE of δ2 . 
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Let us give one more example of MLE. 
Example 3. The uniform distribution U [0, χ] on the interval [0, χ] has p.d.f. 

� 
1 

f(x χ) = ν , 0 ∀ x ∀ χ, |
0, otherwise 

The likelihood function 

n ⎭ 1 
�(χ) = f(Xi χ) = I(X1, . . . , Xn ⊆ [0, χ])

n
|

χ
i=1 

1 
= I(max(X1, . . . , Xn) ∀ χ). 

nχ

Here the indicator function I(A) equals to 1 if A happens and 0 otherwise. What we 
wrote is that the product of p.d.f. f(Xi χ) will be equal to 0 if at least one of the |
factors is 0 and this will happen if at least one of Xis will fall outside of the interval 
[0, χ] which is the same as the maximum among them exceeds χ. In other words, 

�(χ) = 0 if χ < max(X1, . . . , Xn), 

and 
1 

�(χ) = if χ → max(X1, . . . , Xn). nχ

Therefore, looking at the figure 5.1 we see that χ̂ = max(X1, . . . , Xn) is the MLE. 

5.1 Consistency of MLE. 

Why the MLE χ̂ converges to the unkown parameter χ0? This is not immediately 
obvious and in this section we will give a sketch of why this happens. 

17 
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ϕ(θ) 

θ 

max(X1, ..., Xn) 

Figure 5.1: Maximize over χ 

First of all, MLE χ̂ is a maximizer of 

n
1 � 

Lnχ = log f(Xi χ) 
n 

|
i=1 

which is just a log-likelihood function normalized by 1 (of course, this does not affect 
n 

the maximization). Ln(χ) depends on data. Let us consider a function l(X χ) =|
log f(X χ) and define 

�
|

L(χ) = ν0 l(X|χ), 
where we recall that χ0 is the true uknown parameter of the sample X1, . . . , Xn. By 
the law of large numbers, for any χ, 

� 
Ln(χ) ≈ ν0 l(X χ) = L(χ).|

Note that L(χ) does not depend on the sample, it only depends on χ. We will need 
the following 

Lemma. We have, for any χ, 

L(χ) ∀ L(χ0). 

Moreover, the inequality is strict L(χ) < L(χ0) unless 

� ν0 (f(X χ) = f(X χ0)) = 1.| |

which means that � ν = � ν0 . 
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Proof. Let us consider the difference


� � f (X χ)

L(χ) − L(χ0) = ν0 (log f (X|χ) − log f (X|χ0)) = ν0 log 

f (X|
|
χ0) 

. 

t 

t−1 

log t 

10 

Figure 5.2: Diagram (t − 1) vs. log t 

Since (t − 1) is an upper bound on log t (see figure 5.2) we can write 

f (X χ)� 
ν0 log 

f (X|
|
χ0) 

∀ 
� 

� f (X χ) � � � f (x χ) � 
ν0 f (x χ0)dx 

f (X|
|
χ0) 

− 1 = 
f (x|

|
χ0) 

− 1 |

= f (x χ)dx − f (x χ0)dx = 1 − 1 = 0.| |

Both integrals are equal to 1 because we are integrating the probability density func­
tions. This proves that L(χ) − L(χ0 ) ∀ 0. The second statement of Lemma is also 
clear. 

We will use this Lemma to sketch the consistency of the MLE. 
Theorem: Under some regularity conditions on the family of distributions, MLE 

χ̂ is consistent, i.e. χ̂ ≈ χ0 as n ≈ ≤. 
The statement of this Theorem is not very precise but but rather than proving a 

rigorous mathematical statement our goal here to illustrate the main idea. Mathe­
matically inclined students are welcome to come up with some precise statement. 

Proof. 



20 LECTURE 5. 

We have the following facts: 
1. χ̂ is the maximizer of Ln(χ) (by definition). 
2. χ0 is the maximizer of L(χ) (by Lemma). 
3. ≡χ we have Ln(χ) ≈ L(χ) by LLN. 
This situation is illustrated in figure 5.3. Therefore, since two functions Ln and L 

are getting closer, the points of maximum should also get closer which exactly means 
that χ̂ ≈ χ0. 

Ln(θ) 

MLE 
θ0 

θ 

θ̂ 

θL( ) 

Figure 5.3: Lemma: L(χ) ∀ L(χ0 ) 

5.2	 Asymptotic normality of MLE. Fisher infor­

mation. 

We want to show the asymptotic normality of MLE, i.e. that 

∞
n(χ̂ − χ0) ≈d N(0, δ2 

M LE ) for some δ2 
M LE . 

Let us recall that above we defined the function l(X χ) = log f(X χ). To simplify | |
the notations we will denote by l∈(X χ), l∈∈(X χ), etc. the derivatives of l(X χ) with |	 | |
respect to χ. 
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Definition. (Fisher information.) Fisher Information of a random variable X 
with distribution � ν0 from the family { � ν : χ ⊆ �} is defined by 

�2� � 
� � 

I(χ0) = ν0 (l
∈(X|χ0))

2 
ν0 log f (X χ0) .� 

�χ 
|

Next lemma gives another often convenient way to compute Fisher information. 
Lemma. We have, 

� � �2 

ν0 l
∈∈(X χ0) � ν0 �χ2 

log f (X χ0) = −I(χ0).| |

Proof. First of all, we have 

f ∈(X χ)
l∈(X|χ) = (log f (X|χ))∈ = 

f (X|
|
χ) 

and 

(log f (X χ))∈∈ = 
f ∈∈(X χ) (f ∈(X|χ))2 

.|
f (X|

|
χ) 

− 
f 2(X χ)|

Also, since p.d.f. integrates to 1, 

f (x χ)dx = 1,|

if we take derivatives of this equation with respect to χ (and interchange derivative 
and integral, which can usually be done) we will get, 

� 
� 

� 
�2 � 

f (x χ)dx = 0 and 
�χ2 

f (x|χ)dx = f ∈∈(x χ)dx = 0. 
�χ 

| |

To finish the proof we write the following computation 

� � �2 

ν0 l
∈∈(X|χ0) = ν0 �χ2 

log f (X χ0) = (log f (x χ0))
∈∈f (x χ0)dx| | |

� �f ∈∈(x|χ0) 
�f ∈(x χ0) 

�2� 
f (x χ0)dx= 

f (x|χ0) 
− 

f (x
|
χ0) 

|

� 
= f ∈∈(x χ0)dx − ν0 (l

∈(X χ0))
2 = 0 − I(χ0 = −I(χ0).| |

We are now ready to prove the main result of this section. 
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Theorem. (Asymptotic normality of MLE.) We have,


� 1 �
∞
n(χ̂ − χ0) ≈ N 0, . 

I(χ0) 

�nProof. Since MLE χ̂ is maximizer of Ln(χ) = 1 
i=1 log f(Xi|χ) we have, 

L

n 

n
∈ (χ̂) = 0. 

Let us use the Mean Value Theorem 

f(a) − f(b)
= f ∈(c) or f(a) = f(b) + f ∈(c)(a − b) for c ⊆ [a, b] 

a − b 

with f(χ) = Ln
∈ (χ), a = χ̂ and b = χ0. Then we can write, 

0 = Ln
∈ (χ̂) = Ln

∈ (χ0) + L∈∈ χ1)(χ̂ − χ0)n(ˆ


ˆ


L

for some χ̂1 ⊆ [χ, χ0]. From here we get that 

n
∈ (χ0)

χ̂ − χ0 = and 
∞

n(χ̂ − χ0) = −
∞

nLn
∈ (χ0) 

. (5.1)− 
L∈∈

n(χ̂1)n(χ̂1) L∈∈

Since by Lemma in the previous section χ0 is the maximizer of L(χ), we have 

� 
L∈(χ0) = ν0 l

∈(X χ0) = 0. (5.2)|

Therefore, the numerator in (5.1) 

n� 1 � �∞
nLn

∈ (χ0) = 
∞

n l∈(Xi χ0) − 0 (5.3) 
n 

|
i=1

n
� 1 � � 

� � � 
= 

∞
n l∈(Xi χ0) − ν0 l

∈(X1 χ0) ≈ N 0, Varν0 (l
∈(X1 χ0)) 

n 
| | |

i=1 

converges in distribution by Central Limit Theorem. 
Next, let us consider the denominator in (5.1). First of all, we have that for all χ, 

1 � � 

n(χ) = l∈∈(Xi χ) ≈ ν0 l
∈∈(X1 χ) by LLN. (5.4)L∈∈

n 
| |

ˆAlso, since χ̂1 ⊆ [χ, χ0] and by consistency result of previous section χ̂ ≈ χ0, we have 
χ̂1 ≈ χ0. Using this together with (5.4) we get 

n(ˆ
� 

L∈∈ χ1) ≈ ν0 l
∈∈(X1 χ0) = −I(χ0) by Lemma above. |
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Combining this with (5.3) we get 

∞
nLn

∈ (χ0) 
� Varν0 (l

∈(X1 χ0)) 
� 

0, . 
n(χ̂1) 

≈ N 
(I(χ0))2

|− 
L∈∈

Finally, the variance, 

� � 
Varν0 (l

∈(X1 χ0)) = ν0 (l
∈(X χ0))

2 − ( ν0 l
∈(x χ0))

2 = I(χ0) − 0| | |

where in the last equality we used the definition of Fisher information and (5.2). 



� 
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Let us compute Fisher information for some particular distributions. 
Example 1. The family of Bernoulli distributions B(p) has p.f. 

f(x p) = p x(1 − p)1−x|

and taking the logarithm 

log f(x p) = x log p + (1 − x) log(1 − p).|

The second derivative with respect to parameter p is 

� x �2 

| x 1 − x 
log f(x p) = 

1 − x
, 

�p2 
log f(x p) = − 

p2 
− 

(1 − p)2�p 
|

p 
− 

1 − p 

then we showed that Fisher information can be computed as: 
� � 

� �2 X X p 1 − p 1 
I(p) = − 

�p2 
log f(X p) = +

1 − 
= +

(1 − p)2 
= .|

p2 (1 − p)2 p2 p(1 − p) 

¯The MLE of p is p̂ = X and the asymptotic normality result from last lecture becomes 

∞
n(p̂ − p0) ≈ N(0, p0(1 − p0)) 

which, of course, also follows directly from the CLT. 
Example. The family of exponential distributions E(ϕ) has p.d.f. 

ϕe−ϕx , x 0 
f(x ϕ) = 

→|
0, x < 0 

�

and, therefore,


2 1

log f(x ϕ) = log ϕ − ϕx ≥ 

�ϕ2 
log f(x ϕ) = − . 

ϕ2
| |

24 
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This does not depend on X and we get 

� �2 1 
I(ϕ) = − 

�ϕ2 
log f(X ϕ) = . 

ϕ2
|

¯Therefore, the MLE ϕ̂ = 1/X is asymptotically normal and 
∞

n( ̂ 0).ϕ − ϕ0) ≈ N(0, ϕ2 

6.1 Rao-Crámer inequality. 

Let us start by recalling the following simple result from probability (or calculus). 
Lemma. (Cauchy inequality) For any two random variables X and Y we have: 

� � � 
XY ∀ ( X2)1/2( Y 2)1/2 . 

The inequality becomes equality if and only if X = tY for some t 0 with probability → 
one. 

Proof. Let us consider the following function 

� � � � 
�(t) = (X − tY )2 = X2 − 2t XY + t2 Y 2 0.→ 

Since this is a quadractic function of t, the fact that it is nonnegative means that 
it has not more than one solution which is possible only if the discriminant is non 
positive: 

� � � 
D = 4( XY )2 − 4 Y 2 X2 ∀ 0 

and this implies that 
� � � 

XY ∀ ( X2)1/2( Y 2)1/2 . 

Also �(t) = 0 for some t if and only if D = 0. On the other hand, �(t) = 0 means 

� 
(X − tY )2 = 0 ≥ X = tY 

with probability one. 

Let us consider statistic 
S = S(X1, . . . , Xn) 

which is a function of the sample X1, . . . , Xn. Let us define a function 

� 
m(χ) = ν S(X1, . . . , Xn), 
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� 
where ν is the expectation with respect to distribution � ν . In other words, m(χ) 
denotes the mean of S when the sample has distribution � ν . The following is the 
main result of this lecture. 

Theorem. (The Rao-Crámer inequality). We have, 

� 
Varν (S) = ν (S − m(χ))2 (m∈(χ))2 

.→ 
nI(χ) 

This inequality becomes equality if and only if 

n � 
S = t(χ) l∈(X χ) + m(χ)|

i=1 

for some function t(χ) and where l(X χ) = log f(X χ).| |
Proof: Let us introduce the notation 

l(x χ) = log f(x χ)| |

and consider a function 

n � 
ln = ln(X1, . . . , Xn, χ) = l(Xi χ).|

i=1 

Let us apply Cauchy inequality in the above Lemma to the random variables 

�ln
S − m(χ) and l∈ = .n �χ 

We have: 
� � � 

n ∀ ( ν (S − m(χ))2)1/2( ν (l
∈

ν (S − m(χ))l∈ n)2)1/2 . 
� 

Let us first compute ν(ln)2 . If we square out (ln)2 we get ∈ ∈

n n n 
� � �� 

n)2 = 
� 

ν ( 
� 

l∈(Xi|χ))2 = ν l∈(Xi|χ)l∈(Xj χ)ν (l
∈ |

i=1 i=1 j=1 
� � � 

= n ν (l
∈(X1 χ))2 + n(n − 1) ν l(X1 χ) ν l(X2 χ)| | |

where we simply grouped n terms for i = j and remaining n(n − 1) terms for i = j.⇒
By definition of Fisher information 

� 
I(χ) = ν (l

∈(X1|χ))2 . 



� 
� 

� 
|

� 
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Also, 

� 
ν l

∈(X1|χ) = 
� 

ν 
� 

log f (X1 χ) = 
� 

ν 
f ∈(X1|χ)

= 
� 

f ∈(x|χ) 
f (x χ)dx 

�χ 
|

f (X1 χ) f (x|χ) |

= f ∈(x χ)dx = 
�χ 

f (x|χ)dx = 1 = 0.|
�χ 

We used here that f (x χ) is a p.d.f. and it integrates to one. Combining these two |
facts, we get 

� 

n)2 = nI(χ).ν (l
∈



� 
|

� 
� 

|
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We showed that 

� � 
ν (S − m(χ))l∈n ∀ ( ν (S − m(χ))2)1/2(nI(χ))1/2 . 

� 
Next, let us compute the left hand side. We showed that ν l

∈(X1 χ) = 0 which implies |
that 

� � � 
νl

∈ = ν l
∈(Xi χ) = 0 n |

and, therefore, 

� � � � 
ν (S − m(χ))l∈ = ν S l∈n − m(χ) ν l

∈ = νS l∈ .n n n

Let X = (X1, . . . , Xn) and denote by 

�(X χ) = f(X1 χ) . . . f(Xn χ)| | |

the joint p.d.f. (or likelihood) of the sample X1, . . . , Xn We can rewrite l∈ in terms n 

of this joint p.d.f. as 

n
� � � �∈(X χ)

l∈ = log f(Xi χ) = log �(X χ) = .n �χ 
|

�χ 
|

�(X|
|
χ)

i=1 

Therefore, we can write 

� � �∈(X|χ) � 
�∈(X χ) 

ν Sl∈ = ν S(X) = S(X) 
|

�(X)dXn �(X χ) �(X χ)

� � 

= S(X)�∈(X|χ)dX = 
�χ 

S(X)�(X χ)dX = ν S(X) = m∈(χ).|
�χ 

Of course, we integrate with respect to all coordinates, i.e. dX = dX1 . . . dXn. We 
finally proved that 

� 
m∈(χ) ∀ ( ν(S − m(χ))2)1/2(nI(χ))1/2 = (Varν (S))1/2(nI(χ))1/2 
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which implies Rao-Crámer inequality. 

(m∈(χ))2 

Varν (S) → . 
nI(χ) 

The inequality will become equality only if there is equality in the Cauchy in­
equality applied to random variables 

S − m(χ) and l∈ .n

But this can happen only if there exists t = t(χ) such that 

n � 
S − m(χ) = t(χ)l∈ = t(χ) l∈(Xi χ).n |

i=1 

7.1 Efficient estimators. 

Definition: Consider statistic S = S(X1, . . . , Xn) and let 

� 
m(χ) = ν S(X1, . . . , Xn). 

We say that S is an efficient estimate of m(χ) if 

� 
ν (S − m(χ))2 =

(m∈(χ))2 

,
nI(χ) 

i.e. equality holds in Rao-Crámer’s inequality. 
In other words, efficient estimate S is the best possible unbiased estimate of m(χ) 

in a sense that it achieves the smallest possible value for the average squared deviation 
� 

ν (S − m(χ))2 for all χ.

We also showed that equality can be achieved in Rao-Cr´
amer’s inequality only if 

n � 
S = t(χ) l∈(Xi χ) + m(χ)|

i=1 

for some function t(χ). The statistic S n) must a function of the sample = S(X1, · · · , X
only and it can not depend on χ. This means that efficient estimates do not always 
exist and they exist only if we can represent the derivative of log-likelihood l∈ asn 

n � 
l∈ = l∈(Xi|χ) = 

S − m(χ) 
,n t(χ)

i=1 

where S does not depend on χ. In this case, S is an efficient estimate of m(χ).
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Exponential-type families of distributions. Let us consider the special case 
of so called exponential-type families of distributions that have p.d.f. or p.f. f(x χ)|
that can be represented as: 

f(x|χ) = a(χ)b(x)e c(ν)d(x) . 

In this case we have, 

l∈(x χ) = log f(x|χ) = 
�χ 

(log a(χ) + log b(x) + c(χ)d(x))|
�χ

a∈(χ)


= + c∈(χ)d(x). 
a(χ) 

This implies that 
n	 n � a∈(χ) � 

l∈(Xi|χ) = n
a(χ)

+ c∈(χ) d(Xi) 
i=1 i=1 

and 
n	 n

1 � 1 � a∈(χ)
d(Xi) = l∈(Xi χ) − . 

n nc∈(χ) 
|

a(χ)c∈(χ)
i=1	 i=1 

If we take 
n

1 �	 � a∈(χ)
S = d(Xi) and m(χ) = ν S = 

n	
− 

a(χ)c∈(χ)
i=1 

then S will be an efficient estimate of m(χ). 
Example. Consider a family of Poisson distributions �(∂) with p.f. 

∂x 

f(x|∂) = e−� for x = 0, 1, . . . 
x! 

This can be expressed as exponential-type distribution if we write 

e
∂x 1 −� = e−� 

x! �⎛�� x! 
exp	 log ∂ x . 

�⎛�� �⎛�� 
a(�) �⎛�� 

c(�) d(x) 
b(x) 

As a result, 
n n

1 � 1 � 
¯S = d(Xi) = Xi = X 

n n 
i=1 i=1 

� � 
is efficient estimate of its expectation m(∂) = �S = �X1 = ∂. We can also compute 
its expectation directly using the formula above: 

� a∈(∂) −(−e−�) 
�S = − 

a(∂)c∈(∂)
= 

e−�( 1 = ∂. 
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Maximum likelihood estimators. Another interesting consequence of Rao-
Crámer’s theorem is the following. Suppose that the MLE χ̂ is unbiased: 

� 
χ̂ = χ. 

If we take S = χ̂ and m(χ) = χ then Rao-Crámer’s inequality implies that 

Var(χ̂) → 
1 

. 
nI(χ) 

On the other hand when we showed asymptotic normality of the MLE we proved the 
following convergence in distribution: 

� 1 �∞
n(χ̂ − χ) ≈ N 0, . 

I(χ) 

In particular, the variance of 
∞

n(χ̂ − χ) converges to the variance of the normal 
distribution 1/I(χ), i.e. 

1 
Var(

∞
n(χ̂ − χ)) = nVar(χ̂) ≈ 

I(χ) 

which means that Rao-Crámer’s inequality becomes equality in the limit. This prop­
erty is called the asymptotic efficiency and we showed that unbiased MLE is asymp­
totically efficient. In other words, for large sample size n it is almost best possible. 
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8.1 Gamma distribution. 

Let us take two parameters ϕ > 0 and λ > 0. Gamma function �(ϕ) is defined by 
� ∗ 

ϕ−1�(ϕ) = x e−xdx. 
0 

If we divide both sides by �(ϕ) we get 
� ∗ 1 

� ∗ λϕ 

1 = x ϕ−1 e−xdx = y ϕ−1 e−λydy
�(ϕ) �(ϕ)0 0 

where we made a change of variables x = λy. Therefore, if we define 

λ�� 
�(ϕ) x

ϕ−1e−λx , x 0 
f (x ϕ, λ) = 

→|
0, x < 0 

then f (x ϕ, λ) will be a probability density function since it is nonnegative and it |
integrates to one. 

Definition. The distribution with p.d.f. f (x ϕ, λ) is called Gamma distribution |
with parameters ϕ and λ and it is denoted as �(ϕ, λ). 

Next, let us recall some properties of gamma function �(ϕ). If we take ϕ > 1 then 
using integration by parts we can write: 

� ∗ � ∗ 

�(ϕ) = x ϕ−1 e−xdx = x ϕ−1d(−e−x) 
0 0 

� � ∗∗ 
= x ϕ−1(−e−x)

� 
(−e−x)(ϕ − 1)x ϕ−2dx�

0 
− 

0 
� ∗ 

= (ϕ − 1) x(ϕ−1)−1 e−xdx = (ϕ − 1)�(ϕ − 1). 
0 
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Since for ϕ = 1 we have � ∗ 

�(1) = e−xdx = 1 
0 

we can write 

�(2) = 1 · 1, �(3) = 2 · 1, �(4) = 3 · 2 1, �(5) = 4 · 3 2 1· · ·

and proceeding by induction we get that �(n) = (n − 1)! 
Let us compute the kth moment of gamma distribution. We have, 

X
� 

� ∗ 
k λϕ λϕ � ∗ 

k = x x ϕ−1 e−λxdx = x(ϕ+k)−1 e−λxdx 
�(ϕ) �(ϕ)0 0 

λϕ �(ϕ + k) 
� ∗ λϕ+k

ϕ+k−1 e−λxdx= x 
�(ϕ) λϕ+k �(ϕ + k)0 

� ⎛� � 

λ

p.d.f. of �(ϕ + k, λ) integrates to 1 
ϕ �(ϕ + k) �(ϕ + k) (ϕ + k − 1)�(ϕ + k − 1) 

= = = 
�(ϕ) λϕ+k �(ϕ)λk �(ϕ)λk 

(ϕ + k − 1)(ϕ + k − 2) . . . ϕ�(ϕ) ϕ 
= =

(ϕ + k − 1) · · ·
. 

�(ϕ)λk λk 

Therefore, the mean is 
� ϕ 

X = 
λ 

the second moment is 
� 

X2 (ϕ + 1)ϕ 
= 

λ2 

and the variance 

� � 
� ϕ �2 ϕ 

Var(X) = X2 − ( X)2 =
(ϕ + 1)ϕ 

= . 
λ2 

− 
λ λ2 

8.2 Beta distribution. 

It is not difficult to show that for ϕ, λ > 0 

x 
� 1 

ϕ−1(1 − x)λ−1dx = 
�(ϕ)�(λ) 

. 
�(ϕ + λ)0 

Dividing the equation by the right hand side we get that 
� 1 �(ϕ + λ) 

x ϕ−1(1 − x)λ−1dx = 1 
�(ϕ)�(λ)0 
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which means that the function 

f(x ϕ, λ) = 
�(ϕ + λ) 

x ϕ−1(1 − x)λ−1 for x ⊆ [0, 1]|
�(ϕ)�(λ) 

is a probability density function. The corresponding distribution is called Beta dis­
tribution with parameters ϕ and λ and it is denoted as B(ϕ, λ). 

Let us compute the kth moment of Beta distribution. 

� 
Xk = 

� 1 

0 
x k �(ϕ + λ) 

�(ϕ)�(λ) 
x ϕ−1(1 − x)λ−1dx = 

�(ϕ + λ) 
�(ϕ)�(λ) 

� 1 

0 
x k+ϕ−1(1 − x)λ−1dx 

= 
�(ϕ + k)�(λ) 
�(k + ϕ + λ) 

�(ϕ + λ) 
�(ϕ)�(λ) 

� 1 

0 

�(k + ϕ + λ) 
�(ϕ + k)�(λ) 

x(k+ϕ)−1 (1 − x)λ−1dx 
� ⎛� � 

p.d.f of B(k + ϕ, λ) integrates to 1 

= 
�(ϕ + k) 

�(ϕ) 
�(ϕ + λ) 

�(ϕ + λ + k) 
= 

(ϕ + k − 1)(ϕ + k − 2) . . . ϕ�(ϕ) 
�(ϕ) 

× 

�(ϕ + λ) 

= 

× 
(ϕ + λ + k − 1)(ϕ + λ + k − 2) . . . (ϕ + λ)�(ϕ + λ) 

(ϕ + k − 1) . . . ϕ 
(ϕ + λ + k − 1) . . . (ϕ + λ) 

. 

Therefore, the mean is 
� ϕ 

X = 
ϕ + λ 

the second moment is 
� 

X2 (ϕ + 1)ϕ 
= 

(ϕ + λ + 1)(ϕ + λ) 

and the variance is 
ϕλ 

Var(X) = . 
(ϕ + λ)2(ϕ + λ + 1) 
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9.1 Prior and posterior distributions. 

(Textbook, Sections 6.1 and 6.2) 
Assume that the sample X1, . . . , Xn is i.i.d. with distribution � ν0 that comes from 

the family { � ν : χ ⊆ �} and we would like to estimate unknown χ0. So far we have 
discussed two methods - method of moments and maximum likelihood estimates. In 
both methods we tried to find an estimate χ̂ in the set � such that the distribution � ν̂

in some sense best describes the data. We didn’t make any additional assumptions 
about the nature of the sample and used only the sample to construct the estimate of 
χ0. In the next few lectures we will discuss a different approach to this problem called 
Bayes estimators. In this approach one would like to incorporate into the estimation 
process some apriori intuition or theory about the parameter χ0. The way one describes 
this apriori intuition is by considering a distribution on the set of parameters � or, 
in other words, one thinks of parameter χ as a random variable. Let �(χ) be a p.d.f. 
of p.f. of this distribution which is called prior distribution. Let us emphasize that 
�(χ) does not depend on the sample X1, . . . , Xn, it is chosen apriori, i.e. before we 
even see the data. 

Example. Suppose that the sample has Bernoulli distribution B(p) with p.f. 

f(x p) = p x(1 − p)1−x for x = 0, 1,|

where parameter p ⊆ [0, 1]. Suppose that we have some intuition that unknown pa­
rameter should be somewhere near 0.4. Then �(p) shown in figure 9.1 can be a possible 
choice of a prior distribution that reflects our intution. 

After we choose prior distribution we observe the sample X1, . . . , Xn and we would 
like to estimate the unknown parameter χ0 using both the sample and the prior 
distribution. As a first step we will find what is called the posterior distribution 
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ξ (p) 

p 

0 0.4 1 

Figure 9.1: Prior distribution. 

of χ which is the distribution of χ given X1, . . . , Xn. This can be done using Bayes 
theorem. 

Total probability and Bayes theorem. If we consider a disjoint sequence of 
events A1, A2, . . . so that Ai ⊥ Aj = � and � (

�

have 

∗ 
i=1 Ai) = 1 then for any event B we 

∗ 

� (B) = 
� 

� (B ⊥ Ai). 
i=1 

Then the Bayes Theorem states the equality obtained by the following simple com­
puation: 

� � (B Ai) � (A1) � (B Ai) �(A1 ⊥ B) 
� 

(A1)|
� 

|
(B

� (A1 B) = | = = .
∗ 
i=1 

∗ 
i=1 � �(B) (B ⊥ Ai) Ai) (Ai)|

We can use Bayes formula to compute 

�(χ X1, . . . , Xn) − p.d.f. or p.f. of χ given the sample |

if we know 
f(X1, . . . , Xn χ) = f(X1 χ) . . . f(Xn χ)| | |

- p.d.f. or p.f. of the sample given χ, and if we know the p.d.f. or p.f. �(χ) of χ. 
Posterior distribution of χ can be computed using Bayes formula: 

�(χ|X1, . . . , Xn) = 

= 

f(X1, . . . , X χ)�(χ)n|
� 
� f(X1, . . . , Xn|χ)�(χ)dχ 

f(X1|χ) . . . f(Xn|χ)�(χ) 
g(X1, . . . , Xn) 

where � 
g(X1, . . . , Xn) = 

� 
f(X1|χ) . . . f(Xn|χ)�(χ)dχ. 



37 LECTURE 9.


Example. Very soon we will consider specific choices of prior distributions and 
we will explicitly compute the posterior distribution but right now let us briefly 
give an example of how we expect the data and the prior distribution affect the 
posterior distribution. Assume again that we are in the situation described in the 
above example when the sample comes from Bernoulli distribution and the prior 
distribution is shown in figure 9.1 when we expect p0 to be near 0.4 On the other 

¯hand, suppose that the average of the sample is X = 0.7. This seems to suggest that 
our intuition was not quite right, especially, if the sample size if large. In this case we 
expect that posterior distribution will look somewhat like the one shown in figure 9.2 
- there will be a balance between the prior intuition and the information contained 
in the sample. As the sample size increases the maximum of prior distribution will 

¯eventually shift closer and closer to X = 0.7 meaning that we have to discard our 
intuition if it contradicts the evidence supported by the data. 

p 

0.70.40 

(p)ξ 
(p) − Prior Distributionξ 

(p | X1, ..., Xn) − Posterior Distributionξ 

Lies Somewhere Between 
0.4 and 0.7

Figure 9.2: Posterior distribution. 
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10.1 Bayes estimators. 

(Textbook, Sections 6.3 and 6.4) 
Once we find the posterior distribution or its p.d.f. or p.f. �(χ X1, . . . , Xn) we |

turn to constructing the estimate χ̂ of the unknown parameter χ0. The most common 
way to do this is simply take the mean of the posterior distribution 

� 
χ̂ = χ̂(X1, . . . , Xn) = (χ X1, . . . , Xn).|

This estimate χ̂ is called the Bayes estimator. Note that χ̂ depends on the sample 
X1, . . . , Xn since, by definition, the posterior distribution depends on the sample. The 
obvious motivation for this choice of χ̂ is that it is simply the average of the parameter 
with respect to posterior distribution that in some sense captures the information 
contained in the data and our prior intuition about the parameter. Besides this 
obvious motivation one sometimes gives the following motivation. Let us define the 
estimator as the parameter a that minimizes 

� 
((χ − a)2 X1, . . . , Xn),|

i.e. the posterior average squared deviation of χ from a is as small as possible. To 
find this a we find the critical point: 

� � � 
((χ − a)2 X1, . . . , Xn) = 2 (χ X1, . . . , Xn) − 2a = 0 

�a 
| |

and it turns out to be the mean 
� 

a = χ̂ = (χ X1, . . . , Xn).|
Let us summarize the construction of Bayes estimator. 

1. Choose prior distribution of χ, �(χ). 

2. Compute posterior distribution �(χ X1, . . . , Xn).|
3. Find the expectation of the posterior χ̂ = 

� 
(χ|X1, . . . , Xn). 
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10.2 Conjugate prior distributions. 

Often for many popular families of distributions the prior distribution �(χ) is chosen 
so that it is easy to compute the posterior distribution. This is done by choosing �(χ) 
that resembles the likelihood function f(X1, . . . , Xn χ). We will explain this on the |
particular examples. 

Example. Suppose that the sample comes from Bernoulli distribution B(p) with 
p.f. 

f(x p) = p x(1 − p)1−x for x = 0, 1|
and likelihood function 

n p) = p
P 

Xi (1 − p)n−
P 

Xi .f(X1, · · · , X |
Then the posterior distribution will have the form: 

�(p X1, . . . , Xn) = 
f(X1, . . . , Xn|p)�(p)

= 
p

P 
Xi (1 − p)n−P 

Xi �(p) 
.|

g(X1, . . . , Xn) g(X1, . . . , Xn) 

Notice that the likelihood function 

p
P 

Xi (1 − p)n−
P 

Xi 

resembles the density of Beta distribution. Therefore, if we let the prior distribution 
be a Beta distribution B(ϕ, λ) with some parameters ϕ, λ > 0: 

�(p) = 
�(ϕ + λ) 

p ϕ−1(1 − p)λ−1 

�(ϕ)�(λ) 

then the posterior distribution will be 

1 
�(p X1, . . . , Xn) = 

�(ϕ + λ) 
p(ϕ+

P 
Xi )−1(1 − p)(λ+n−P 

Xi)−1 .|
g(X1, . . . , Xn) �(ϕ)�(λ) � ⎛� � 

resembles Beta distribution 

We still have to compute g(X1, . . . , Xn) but this can be avoided if we notice that 
�(p X1, . . . , Xn) is supposed to be a p.d.f. and it looks like a Beta distribution with |
parameter ϕ + 

� 
Xi and λ + n − 

� 
Xi. Therefore, g has no choice but to be such 

that 

�(ϕ + λ + n)
�(p X1, . . . , Xn) = |

�(ϕ + 
� 

Xi)�(λ + n − 
� 

Xi) 
p(ϕ+

P 
Xi )−1(1 − p)(λ+n−

P 
Xi )−1 

which is the p.d.f. of B ϕ+ 
� 

Xi, λ+ n−� 
Xi 

� 
. Since the mean of Beta distribution 

B(ϕ, λ) is equal to ϕ/(ϕ + λ), the Bayes estimator will be 

� ϕ + 
� 

Xi ϕ + 
� 

Xi 
p̂ = (p X1, . . . , Xn) = = .|

ϕ + 
� 

Xi + λ + n − 
� 

Xi ϕ + λ + n 



40 LECTURE 10. 

Let us notice that for large sample size, i.e. when n ≈ +≤, we have 

ϕ ¯+ Xϕ + 
� 

Xi ¯p̂ = 
ϕ + λ + n 

= 
ϕ

n 
λ + 1 

∅ X. 
+ 

n n 

This means that when we have a lot of data our prior intuition becomes irrelevant 
¯and the Bayes estimator is approximated by the sample average X. On the other 

hand, for n = 0 
ϕ 

p̂ = 
ϕ + λ 

which is the mean of prior distribution B(ϕ, λ). If we have no data we simply follow 
our intuitive guess. 

Example. Suppose that the sample comes from the exponential distribution 
E(ϕ) with p.f. 

f(x|ϕ) = ϕe−ϕx for x 0→ 

in which case the likelihood function is 

f(X1, . . . , Xn) = ϕn e−ϕ 
P 

Xi . 

The posterior distribution will have the form: 

1 
�(ϕ|X1, . . . , Xn) = ϕn e−ϕ 

P 
Xi �(ϕ). 

g(X1, . . . , Xn) 

Notice that the likelihood function resembles the p.d.f. of Gamma distribution and, 
therefore, we will take prior to be a Gamma distribution �(u, v) with parameters u 
and v, i.e. 

uv
�(ϕ) = ϕu−1 e−vϕ . 

�(u) 

Then, the posterior will be equal to 
u1 v

ϕ(u+n)−1 e−ϕ(
P 

Xi+v)�(ϕ X1, . . . , Xn) = |
g �(u) 

which again looks like a Gamma distribution with parameters u + n and v + 
� 

Xi. 
Again, g(X1, . . . , Xn) will be such that 

(
� 

Xi + v)u+n 

ϕ(u+n)−1 e−ϕ(
P 

Xi+v)�(ϕ X1, . . . , Xn) = |
�(u + n) 

which is the p.d.f. of �(u + n, v + 
� 

Xi). Since the mean of Gamma distribution 
�(ϕ, λ) with parameters ϕ and λ is equal to ϕ/λ, the Bayes estimator will be 

� u + n 
ϕ̂ = (ϕ|X1, . . . , Xn) = 

v + 
� 

Xi 
. 
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For large sample size n, we get 

u + 1 1 
ϕ̂ = n 

¯ ¯ . 
n
v + X 

∅ 
X 

Example. If the sample comes from Poisson distribution �(∂) with p.d.f. 

x∂
f(x|∂) = e−� for x = 0, 1, 2, . . . 

x! 

then the likelihood function is 

∂
P 

Xi 

f(X1, . . . , Xn ∂) = � 
Xi! 

e−n�|

and the posterior distribution will have the form 

1 ∂
P 

Xi 

�(∂ X1, . . . , Xn) = |
g(X1, . . . , Xn) 

� 
Xi! 

e−n��(∂). 

Since again the likelihood function resembles the Gamma distribution we will take 
the prior to be a Gamma distribution �(u, v) in which case 

u1 v
∂(

P 
Xi+u)−1 e−(n+v)��(∂ X1, . . . , Xn) = .|

g �(u) 

Since this looks like a Gamma distribution �(u + 
� 

Xi, n + v) the posterior has no 
choice but to be equal to this distribution and the Bayes estimator will be: 

X + u¯
ˆ

� 
Xi + u n∂ = = . 
n + v v1 + 

n 
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11.1 Sufficient statistic. 

(Textbook, Section 6.7) 
We consider an i.i.d. sample X1, . . . , Xn with distribution � ν from the family 

{ � ν : χ ⊆ �}. Imagine that there are two people A and B, and that 
1. A observes the entire sample X1, . . . , Xn, 
2. B observes only one number T = T (X1, . . . , Xn) which is a function of the 

sample. 
Clearly, A has more information about the distribution of the data and, in par­

ticular, about the unknown parameter χ. However, in some cases, for some choices of 
function T (when T is so called sufficient statistics) B will have as much information 
about χ as A has. 

Definition. T = T (X1, · · · , Xn) is called sufficient statistics if 

� ν (X1, . . . , Xn T ) = � ∈(X1, . . . , Xn T ), (11.1)| |

i.e. the conditional distribution of the vector (X1, . . . , Xn) given T does not depend 
on the parameter χ and is equal to � ∈. 

If this happens then we can say that T contains all information about the param­
eter χ of the disribution of the sample, since given T the distribution of the sample 
is always the same no matter what χ is. Another way to think about this is: why the 
second observer B has as much information about χ as observer A? Simply, given T , 
the second observer B can generate another sample X1

∈ , . . . , X ∈ by drawing it accord-n 

ing to the distribution � ∈(X1, · · · , Xn|T ). He can do this because it does not require 
the knowledge of χ. But by (11.1) this new sample X1

∈ , . . . , X ∈ will have the same n 

distribution as X1, . . . , Xn, so B will have at his/her disposal as much data as the 
first observer A. 

The next result tells us how to find sufficient statistics, if possible. 
Theorem. (Neyman-Fisher factorization criterion.) T = T (X1, . . . , Xn) is suffi­

cient statistics if and only if the joint p.d.f. or p.f. of (X1, . . . , Xn) can be represented 
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as 

f(x1, . . . , xn χ) � f(x1 χ) . . . f(xn χ) = u(x1, . . . , xn)v(T (x1, . . . , xn), χ) (11.2)| | |

for some function u and v. (u does not depend on the parameter χ and v depends on 
the data only through T .) 

Proof. We will only consider a simpler case when the distribution of the sample 
is discrete. 

1. First let us assume that T = T (X1, . . . , Xn) is sufficient statistics. Since the 
distribution is discrete, we have, 

f(x1, . . . , xn χ) = � ν(X1 = x1, . . . , Xn = xn),|

X
i.e. the joint p.f. is just the probability that the sample takes values x1, . . . , xn. If 

1 = x1, . . . , Xn = xn then T = T (x1, . . . , xn) and, therefore, 

� ν(X1 = x1, . . . , Xn = xn) = � ν (X1 = x1, . . . , Xn = xn, T = T (x1, . . . , xn)). 

We can write this last probability via a conditional probability 

� ν(X1 = x1, . . . , Xn = xn, T = T (x1, . . . , xn)) 

= � ν (X1 = x1, . . . , Xn = xn T = T (x1, . . . , xn)) � ν (T = T (x1, . . . , xn)).|

All together we get, 

f(x1, . . . , xn|χ) = � ν (X1 = x1, . . . , Xn = xn T = T (x1, . . . , xn)) � ν (T = T (x1, . . . , xn)).|

Since T is sufficient, by definition, this means that the first conditional probability 

� ν (X1 = x1, . . . , Xn = xn T = T (x1, . . . , xn)) = u(x1, . . . , xn)|

for some function u independent of χ, since this conditional probability does not 
depend on χ. Also, 

� ν (T = T (x1, . . . , xn)) = v(T (x1, . . . , xn), χ) 

depends on x1, . . . , xn only through T (x1, . . . , xn). So, we proved that if T is sufficient 
then (11.2) holds. 

2. Let us now show the opposite, that if (11.2) holds then T is sufficient. By 
definition of conditional probability, we can write, 

� ν (X1 = x1, . . . , Xn = xn T (X1, . . . , Xn) = t)|
� ν (X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) = t) 

= . (11.3)
� ν (T (X1, . . . , Xn) = t) 



44 LECTURE 11. 

First of all, both side are equal to zero unless 

t = T (x1, . . . , xn), (11.4) 

because when X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) must be equal to T (x1, . . . , xn). 
For this t, the numerator in (11.3) 

� ν (X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) = t) = � ν (X1 = x1, . . . , Xn = xn),


since we just drop the condition that holds anyway. By (11.2), this can be written as


u(x1, . . . , xn)v(T (x1, . . . , xn), χ) = u(x1, . . . , xn)v(t, χ).


As for the denominator in (11.3), let us consider the set 

A(t) = {(x1, . . . , xn) : T (x1, . . . , xn) = t} 

of all possible combinations of the x’s such that T (x1, . . . , xn) = t. Then, obviously, 
the denominator in (11.3) can be written as, 

� ν (T (X1, . . . , Xn) = t) = � ν ((X1, . . . , Xn) ⊆ A(t)) 
� 

= � ν (X1 = x1, . . . , Xn = xn) = 
� 

u(x1, . . . , xn)v(t, χ) 
(x1 ,···,xn)≤A(t) (x1,···,xn)≤A(t) 

where in the last step we used (11.2) and (11.4). Therefore, (11.3) can be written as 

u(x1, . . . , xn)v(t, χ) u(x1, . . . , xn) 
= � 

u(x1, . . . , xn)v(t, χ) 
� 

A(t) u(x1, . . . , xn)A(t) 

and since this does not depend on χ anymore, it proves that T is sufficient. 

Example. Bernoulli Distribution B(p) has p.f. f(x p) = px(1 − p)1−x for x ⊆|
{0, 1}. The joint p.f. is 

� 
n p) = p

P 
xi (1 − p)n−

P 
xi = v( Xi, p),f(x1, · · · , x |

i.e. it depends on x’s only through the sum 
� 

xi. Therefore, by Neyman-Fisher 
factorization criterion T = 

� 
Xi is a sufficient statistic. Here we set 

v(T, p) = p T (1 − p)n−T and u(x1, . . . , xn) = 1. 
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Let us give several more examples of finding sufficient statistics. 
Example 1. Poisson Distribution �(∂) has p.f. 

x∂
f(x|∂) = e−� for x = 0, 1, 2, . . . 

x! 

and the joint p.f. is 

∂
P 

xi 1 
n ∂) = �n xi! 

e−n� = �n e−n�∂
P 

Xi .f(x1, · · · , x |
Xi!i=1 i=1 

Therefore we can take 
n

1 � 
u(x1, . . . , xn) = , T (x1, . . . , xn) = xi and v(T, ∂) = e−n�∂T .�n Xi!i=1 i=1 

Therefore, by Neyman-Fisher factorization criterion T = 
�n Xi is a sufficient statis-i=1 

tics. 

δ
Example 2. Consider a family of normal distributions N(ϕ, δ2) and assume that 

2 is a given known parameter and ϕ is the only unknown parameter of the family. 
The p.d.f. is given by 

1 (x−�)2 

f(x ϕ) = | ∞
2νδ

e− 
2�2 

and the joint p.d.f. is 

n
1 � � (xi − ϕ)2 � 

f(x1, . . . , xn ϕ) = exp 
2δ2

|
(
∞

2νδ)n 
− 

i=1 

1 � � 
xi 

2 
� 

xiϕ nϕ2 � 
= exp + 

(
∞

2νδ)n 
− 

2δ2 δ2 
− 

2δ2 

1 � � 
x2 

i 
� �� ϕ nϕ2 � 

= exp exp xi . 
(
∞

2νδ)n 
− 

2δ2 δ2 
− 

2δ2 
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If we take T = 
�n

i=1 Xi, 

1 2 nϕ2ϕxi u(x1, . . . , xn) = and v(T, ϕ) = exp Texp
(
∞

2νδ)n 
− 

δ2 
− ,

2δ2 2δ2 

then Neyman-Fisher criterion proves that T is a sufficient statistics. 

12.1 Jointly sufficient statistics. 

Consider 

T1 n)= T1(X1, · · · , X
T2 n)= T2(X1, · · · , X
· · · 
Tk n)= Tk(X1, · · · , X

⎨ 
⎧⎧⎩ 

⎧⎧⎫

- functions of the sample (X1, · · · , Xn). 

Very similarly to the case when we have only one function T, a vector (T1, · · · , Tk ) is 
called jointly sufficient statistics if the distribution of the sample given T ’s 

� ν (X1, . . . , Xn T1, . . . , Tk)|

does not depend on χ. The Neyman-Fisher factorization criterion says in this case 
that (T1, . . . , Tk) is jointly sufficient if and only if 

f(x1, . . . , xn χ) = u(x1, . . . , xn)v(T1, . . . , Tk , χ).|

The proof goes without changes. 
Example 1. Let us consider a family of normal distributions N(ϕ, δ2), only now 

both ϕ and δ2 are unknown. Since the joint p.d.f. 

2 nϕ21
 xiϕxif(x1, . . . , xn ϕ, δ2) = | + 
(
∞

2νδ)n 
exp − −

2δ2 δ2 2δ2 

is a function of 
n n �� 

T1 = Xi and T2 = Xi 
2 , 

i=1 i=1 

by Neyman-Fisher criterion (T1, T2) is jointly sufficient. 
Example 2. Let us consider a uniform distribution U [a, b] on the interval [a, b] 

where both end points are unknown. The p.d.f. is 

f(x a, b) = |
1 

b−a , [a, b],x ⊆
0, otherwise. 
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The joint p.d.f. is 

1 
n a, b) =

(b − a)n 
I(x1 ⊆ [a, b]) × . . . × I(xn [a, b])f(x1, · · · , x |	 ⊆ 

1 
=

(b − a)n 
I(xmin ⊆ [a, b]) × I(xmax [a, b]).⊆ 

The indicator functions make the product equal to 0 if at least one of the points falls 
out of the range [a, b] or, equivalently, if either the minimum xmin = min(x1, . . . , xn) 
or maximum xmax = max(x1, . . . , xn) falls out of [a, b]. Clearly, if we take 

T1 = max(X1, . . . , Xn) and T2 = min(X1, . . . , Xn) 

then (T1, T2) is jointly sufficient by Neyman-Fisher factorization criterion. 
Sufficient statistics: 

•	 Gives a way of compressing information about underlying parameter χ. 

•	 Gives a way of improving estimator using sufficient statistic (which takes us to 
our next topic). 

12.2	 Improving estimators using sufficient statis­
tics. Rao-Blackwell theorem. 

(Textbook, Section 6.9) 
Consider β = n) - some estimator of unknown parameter χ0, which β(X1, · · · , X

corresponds to a true distribution � ν0 of the data. Suppose that we have a sufficient 
statistics T = T (X1, · · · , Xn). (T can also be a vector of jointly sufficient statistics.) 

One possible natural measure of the quality of the estimator β is the quantity 
� 

ν0 (β(X1, . . . , Xn) − χ0)
2 

which is an average squared deviation of the estimator from the parameter χ0. 
Consider a new estimator of χ0 given by 

� 
β∈(X1, . . . , Xn) = ν0 (β(X1, . . . , Xn) T (X1, . . . , Xn)).|

Question: why doesn’t β∈ depend on χ0 even though formally the right hand side 
depends on χ0? 

Recall that this conditional expectation is the expectation of β(x1, . . . , xn) with 
respect to conditional distribution 

� ν0 (X1, . . . , Xn T ).|
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Since T is sufficient, by definition, this conditional distribution does not depend on 
the unknown parameter χ0 and as a result β∈ doesn’t depend on χ0. This point is 
important, since the estimate can not depend on the unknown parameter, we should 
be able to compute it using only the data. 

Another important point is that the conditional distribution and, therefore, the 
conditional expectation depend only on T, which means that our new estimate β ∈ 

actually depends on the data only through T, i.e. β∈ = β∈(T ). 
Theorem. (Rao-Blackwell) We have, 

� � 
ν0 (β

∈ − χ0)
2 

ν0 (β − χ0)
2∀ 

Proof. Given random variable X and Y, recall from probability theory that 

� � � 
X = (X Y )}.{ |

Clearly, it we can prove that 

� � 
ν0 ((β

∈ − χ0)
2 T ) ∀ ν0 ((β − χ0)

2 T )| |

then averaging both side will prove the Theorem. 
� 

First, consider the left hand side. Since β∈ = ν0 (β T ),|
� � � 

ν0 ((β
∈ − χ0)

2 T ) = ν0 (( ν0 (β T ) − χ0)
2 T ) = . . . | | |

� 
Since ( ν0 (β T ) − χ0)

2 is already a function of T we can remove the conditional |
expectation given T and continue 

� � � 
. . . = ( ν0 (β T ) − χ0)

2 = ( ν0 (β T ))2 − 2χ0 ν0 (β|T ) + χ2 
0 .| |

Next, we consider the right hand side. Squaring out we get, 

� � � 
ν0 ((β − χ0)

2 T ) = ( ν0 (β
2 T )) − 2χ0 ν0 (β|T ) + χ2 

0 .| |

Therefore, to prove that LHS ∀ RHS, we need to show that 

� � 
( ν0 (β|T ))2 

ν0 (β
2|T ).∀ 

But this is the same as 

� � 
0 ∀ ν0 (β

2 T ) − ( ν0 (β T ))2 = Varν0 (β T )| | |

which is obvious since the variance Varν0 (β T ) is always positive. |
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13.1 Minimal jointly sufficient statistics. 

When it comes to jointly sufficient statistics (T1, . . . , Tk) the total number of them 
(k) is clearly very important and we would like it to be small. If we don’t care about 
k then we can always find some trivial examples of jointly sufficient statistics. For 
instance, the entire sample X1, . . . , Xn is, obviously, always sufficient, but this choice 
is not interesting. Another trivial example is the order statistics Y1 ∀ Y2 ∀ . . . ∀ Yn 

which are simply the values X1, . . . , Xn arranged in the increasing order, i.e. 

Y1 = min(X1, . . . , Xn) ∀ . . . ∀ Yn = max(X1, . . . , Xn). 

Y1, . . . , Yn are jointly sufficient by factorization criterion, since 

f(X1, . . . , Xn χ) = f(X1 χ) × . . . × f(Xn χ) = f(Y1 χ) × . . . × f(Yn χ).| | | | |

When we face different choices of jointly sufficient statistics, how to decide which one 
is better? The following definition seems natural. 

Definition. (Minimal jointly sufficient statistics.) (T1, . . . , Tk ) are minimal jointly 
sufficient if given any other jointly sufficient statistics (r1, . . . , rm) we have, 

T1 = g1(r1, . . . , rm), . . . , Tk = gk(r1, . . . , rm), 

i.e. T s can be expressed as functions of rs. 
How to decide whether (T1, . . . , Tk ) is minimal? One possible way to do this is 

through the Maximum Likelihood Estimator as follows. � 
Suppose that the parameter set � is a subset of k , i.e. for any χ ⊆ � 

� 
χ = (χ1, . . . , χk) where χi ⊆ . 

Suppose that given the sample X1, . . . , Xn we can find the MLe of χ, 

χ̂ = (χ̂1, . . . , χ̂k ). 

49 
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The following simple fact will be useful. 
Fact. Given any jointly sufficient statistics (r1, . . . , rm) the MLE χ̂ = (χ̂1, . . . , χ̂k ) 

is always a function of (r1, . . . , rm). 
To see this we recall that χ̂ is the maximizer of the likelihood which by factorization 

citerion can be represented as 

f(x1, . . . , xn χ) = u(x1, . . . , xn)v(r1, . . . , rm, χ).|

But maximizing this over χ is equivalent to maximizing v(r1, . . . , rm, χ) over χ, and 
the solution of this maximization problem depends only on (r1, . . . , rm), i.e. χ̂ = 
χ̂(r1, . . . , rm). 

Y

This simple fact implies that if MLE χ̂ is jointly sufficient statistics then χ̂ is 
minimal because χ̂ = χ̂(r1, . . . , rm) for any jointly sufficient (r1, . . . , rm). 

Example. If the sample X1, . . . , Xn has uniform distribution U [a, b], we showed 
before that 

1 = min(X1, . . . , Xn) and Yn = max(X1, . . . , Xn) 

are the MLE of unknown parameters (a, b) and (Y1, Yn) are jointly sufficient based on 
factorization criterion. Therefore, (Y1, Yn) are minimal jointly sufficient. 

Whenever we have minimal jointly sufficient statistics this yields one important 
consequence for constructing an estimate of the unkown parameter χ. Namely, if we 
measure the quality of an estimate via the average squared error loss function (as in 
the previous section) then Rao-Blackwell theorem tells us that we can improve any 
estimator by conditioning it on the sufficient statistics (this is also called projecting 
onto sufficient statistics). This means that any ”good” estimate must depend on the 
data only through this minimal sufficient statistics, otherwise, we can always improve 
it. Let us give one example. 

Example. If we consider a sample X1, . . . , Xn from uniform distribution U [0, χ] 
then we showed before that 

Yn = max(X1, . . . , Xn) 

is the MLE of unknown parameter χ and also Yn is sufficient by factorization criterion. 
Therefore, Yn is minimal jointly sufficient. Therefore, any ”good” estimate of χ should 
depend on the sample only through their maximum Yn. If we recall the estimate of χ 
by method of moments 

¯χ̂ = 2 X, 

it is not a function of Yn and, therefore, it can be improved. 
Question. What is the distribution of the maximum Yn? 
End of material for Test 1. Problems on Test 1 will be similar to homework 

problems and covers up to Pset 4. 
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13.2 �2 distribution. 

(Textbook, Section 7.2) 
Consider a standard normal random variable X ∩ N(0, 1). Let us compute the 

distribution of X2 . The cumulative distribution function (c.d.f.) of X2 is given by 
� ≥x 1 

(−
∞

x ∀ X ∀
∞

x) = 
2t

� (X2 ∀ x) = � e− dt.∞
2ν 

2 

−≥
x 

dThe p.d.f. is equal to the derivative 
dx � (X ∀ x) of c.d.f. and, hence, the density 

of X2 is 
� ≥xd 1 2 1 (

�
x)2 

(
∞

x)∈ 
1 (−

�
x)2 

(−
∞

x)2 2 2dt = ∞
2ν

e− − ∞
2ν

e− t

e− ∈fX2 (x) ∞
2ν 

= 
dx −≥

x 

1 1 11 
x 2 −1 e− x 

2 = e− x 
2 .∞

2ν
∞

x 
∞

2ν 
= 

1The probability density of X2 looks like Gamma Distribution �( 1 
2 , 2 ). Recall that 

gamma distribution �(ϕ, λ) with parameters (ϕ, λ) has p.d.f. 

λϕ 

f(x|ϕ, λ) = x ϕ−1 e−λx for x 0. 
�(ϕ) 

→ 

Consider independent random variables 

X1 ∩ �(ϕ1, λ), . . . , Xn ∩ �(ϕn, λ) 

with gamma distributions that have the same parameter λ, but ϕ1, . . . , ϕn can be 
different. Question: what is the distribution of X1 + . . . + Xn? 

First of all, if X ∩ �(ϕ, λ) then the moment generating function of X can be 
computed as follows: 

� tX 

� ∗ 
tx λϕ 

x ϕ−1 e−λxdxe = e 
�(ϕ)0 

� ∗ λϕ 
ϕ−1 = x e−(λ−t)xdx 

�(ϕ)0 

λϕ 

= 
� ∗ (λ − t)ϕ 

x ϕ−1 e−(λ−t)xdx . 
(λ − t)ϕ 

0 �(ϕ) 
� ⎛� � 

The function in the underbraced integral looks like a p.d.f. of gamma distribution 
�(ϕ, λ − t) and, therefore, it integrates to 1. We get, 

� λ �ϕ� tX e = . 
λ − t 
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Moment generating function of the sum 
�n Xi isi=1 

� 
e t 

Pn 
i=1 Xi = 

� 
n ⎭ 

e tXi = 
n ⎭ � 

e tXi = 
n ⎭� λ �ϕi 

= 
� λ �P 

ϕi 

. 
i=1 i=1 i=1 

λ − t λ − t 

This means that: 
n � � n � � 

i=1 

Xi ∩ � 
i=1 

ϕi, λ . 

1Given i.i.d. X1, · · · , X ∩ N(0, 1), the distribution of X1
2 + . . . + X2 is �( n 

2 ) since n n 2 , 
1we showed above that X2 ∩ �( 1 

2 , 2 ).i 

Definition: α2 distribution with n degrees of freedom is the distribution of the n 

sum X1
2 + . . . + X2 

n, where Xis are i.i.d. standard normal, which is also a gamma 

2 , 2 ).distribution �( n 1 
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14.1	 Estimates of parameters of normal distribu­

tion. 

Let us consider a sample 
X1, . . . , Xn ∩ N(ϕ, δ2) 

from normal distribution with mean ϕ and variance δ2 . Using different methods (for 
¯example, maximum	 likelihood) we showed that one can take X as an estimate of 

¯mean ϕ and X̄2 − (X)2 as an estimate of variance δ2 . The question is: how close 
are these estimates to actual values of unknown parameters? By LLN we know that 
these estimates converge to ϕ and δ2 , 

¯ ¯X ≈ ϕ, X̄2 − (X)2 ≈ δ2 , n ≈ ≤, 

¯ ¯but we will try to describe precisely how close X and X̄2 − (X)2 are to ϕ and δ2 . 
We will start by studying the following 

¯ ¯Question: What is the joint distribution of ( X, X̄2 − (X)2) when the sample 

X1, . . . , Xn ∩ N(0, 1) 

has standard normal distribution. 
Orthogonal transformations. 
The student well familiar with orthogonal transformations may skip to the be­

ginning of next lecture. Right now we will repeat some very basic discussion from 
linear algebra and recall some properties and geometric meaning of orthogonal tran­
sormations. To make our discussion as easy as possible we will consider the case of � 
3-dimensional space 3 . 

Let us consider an orthonormal basis (θe1, θe2, θe3) as shown in figure 14.1, i.e. they 
θare orthogonal to each other and each has length one. Then any vector X can be 

represented as 
θX = X1θe1 + X2θe2 + X3θe3, 

53 
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e1=(1, 0, 0) 

e2=(0, 1, 0) 

e3=(0, 0, 1) 

X=(X1, X2, X3) 

Rotate v3 v2 
v1 

Vectors 

Transformations 

Figure 14.1: Unit Vectors Transformation. 

θwhere (X1, X2, X3) are the coordinates of vector X 
Suppose now that we make a rotation (and, maybe, reflection) such that the 

vectors (θe1, θe2, θe3) go to another orthonormal basis (θv1, θv2, θv3), i.e. 

θv1 = θv2 = θv3 = 1, θv1 � θv2 � θv3 � θv1.| | | | | | 
Let us denote the coordinates of vector θvi = (vi1, vi2, vi3) for i = 1, 2, 3. Then vector 
θX is rotated to vector 

θX = X1θe1 + X2θe2 + X3θe3 ≈ X1θv1 + X2θv2 + X3θv3 

= X1(v11, v12, v13) + X2(v21, v22, v23) + X3(v31, v32, v33) 
⎪ � 

v11 v12 v13 

= (X1, X2, X3) � v21 v22 v23 ⎝ = θXV, 
v31 v32 v33 

where V is the matrix with elements vij . 
If we want to make inverse rotation so that vectors (θv1, θv2, θv3) rotate back to 

θ(θe1, θe2, θe3), we need to multiply vector X by the transpose V T : 
⎪ � 

v11 v21 v31 

X ≈ θ

v

θ XV T = (X1, X2, X3) � v12 v22 v32 ⎝ . 
13 v23 v33 

Let us check that transpose V T defines inverse rotation. For example, let us check 
that vector θv1 = (v11, v12, v13) goes to θe1 = (1, 0, 0). We have, 

2 2 
�

θv1V
T = 

� 
v2 
11 + v12 + v13, v11v21 + v12v22 + v13v23, v11v31 + v12v32 + v13v33 
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= 
� 

(length of θv1)
2 , θv1 · θv2, θv1 · θv3 = (1, 0, 0) 

since (θv1, θv2, θv3) is an orthonormal basis. Therefore, we have proven that θv1 ≈ θe1. 
Similarly, θv2 ≈ θe2 and θv3 ≈ θe3. 

Note that this inverse rotation V T will send the basis (θe1, θe2, θe3) to 

v∈ = (v11, v21, v31)θ1 

v∈ = (v12, v21, v32)θ2 

v∈ = (v13, v21, v33),θ3 

- the columns of matrix V, which is, therefore, again an orthonormal basis: 

v∈ = v∈ = v∈ = 1 

θv

|θ1| |θ2| |θ3| 

1
∈ � θv2

∈ � θv3
∈ � θv1

∈ . 

This means that both rows and columns of V forms an orthonormal basis. 

e3=(0, 0, 1) 

e2=(0, 1, 0) 

e1=(1, 0, 0) 

v3 v2 
v1v3’ v2’ 

v1’ 

V
T V T 

Figure 14.2: Unit Vectors Fact. 
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15.1	 Orthogonal transformation of standard nor­

mal sample. 

Consider X1, . . . , Xn ∩ N(0, 1) i.d.d. standard normal r.v. and let V be an orthogonal � θtransformation in n . Consider a vector θY = XV = (Y1, . . . , Yn). What is the joint 
distribution of Y1, . . . , Yn? It is very easy to see that each Yi has standard normal 
distribution and that they are uncorrelated. Let us check this. First of all, each 

n � 
Yi = vkiXk 

k=1 

is a sum of independent normal r.v. and, therefore, Yi has normal distribution with 
mean 0 and variance 

n � 
2Var(Yi) = vik = 1, 

k=1 

since the matrix V is orthogonal and the length of each column vector is 1. So, each 
r.v. Yi ∩ N(0, 1). Any two r.v. Yi and Yj in this sequence are uncorrelated since 

n 
� � 

YiYj = vikvjk = θvi
∈θvj

∈ = 0 
k=1 

since the columns θvi
∈ � θvj

∈ are orthogonal. 
Does uncorrelated mean independent? In general no, but for normal it is true 

θwhich means that we want to show that Y ’s are i.i.d. standard normal, i.e. Y 
θhas the same distribution as X. Let us show this more accurately. Given a vector 

t = (t1, . . . , tn), the moment generating function of i.i.d. sequence X1, . . . , Xn can be 
computed as follows: 

n 
θ � t1 X1+...+tn Xn = 

⎭ � ti Xi�(t) = 
� 

e XtT 
= e e 

i=1 
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t2 
i 
2 

n ⎭
1
2 

1
2

t| |2 
i 

2
Pn 

i=1 t= e
 = e = e . 
i=1 

θOn the other hand, since θY = XV and 
⎪


t1 
T θ= XV tT ,

⎬
�


.
.
. 
tn 

�
⎝
t1Y1 + . . . + tnYn = (Y1, . . . , Yn) = (Y1, . . . , Yn)t

the moment generating function of Y1, . . . , Yn is: 

� XV tT � θX (tV T )T 
e t1 Y1+···+tn Yn = 

� 
e 

θ
= e . 

θBut this is the moment generating function of vector X at the point tV T , i.e. it is 
equal to 

�(tV T ) = e 
1
2
| 2 

= e

1
2
| 2tV T | t| , 

tV Tsince the orthogonal transformation preserves the length of a vector t . This| =| |
θX which 
|

means that the moment generating function of θY is exactly the same as of 
means that Y1, . . . , Yn have the same joint distribution as X’s, i.e. i.i.d. standard 
normal. 

Now we are ready to move to the main question we asked in the beginning of the 
¯ ¯previous lecture: What is the joint distribution of X (sample mean) and X̄2 − (X)2 

(sample variance)? 
¯Theorem. If X1, . . . , Xn are i.d.d. standard normal, then sample mean X and 

¯sample variance X̄2 − (X)2 are independent, 

¯ ¯ ¯
∞

nX ∩ N(0, 1) and n(X2 − (X)2) ∩ α2 
n−1, 

¯ ¯ ¯i.e. 
∞

nX has standard normal distribution and n(X2 − (X)2) has α2 
n−1 distribution 

with (n − 1) degrees of freedom. 
Proof. Consider a vector θY given by transformation 

⎪

1≥
n · · · · · · · · · 

Y = (Y1, . . . , Yn) = θθ XV = (X1, . . . , X
⎬
�


.
 �
⎝
n) . . ? . · · · · · · 

1≥
n · · · · · · · · · 

Here we chose a first column of the matrix V to be equal to 

1 1 
θv1 = , . . . , ∞

n
.∞

n 
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n
R 

V3 

V1V2 

Figure 15.1: Unit Vectors. 

We let the remaining columns be any vectors such that the matrix V defines orthog­
onal transformation. This can be done since the length of the first column vector 
θv1 = 1, and we can simply choose the columns θv2, . . . , θvn to be any orthogonal basis | |
in the hyperplane orthogonal to vector θv1, as shown in figure 15.1. 

Let us discuss some properties of this particular transformation. First of all, we 
showed above that Y1, . . . , Yn are also i.i.d. standard normal. Because of the particular 
choice of the first column θv1 in V, the first r.v. 

1 1 
Y1 = X1 + . . . + Xn,∞

n 
∞

n 

and, therefore, 
1

X̄ = Y1. (15.1)∞
n 

Next, n times sample variance can be written as 

� 1 �2 
¯ ¯n(X2 − (X)2) = X1

2 + . . . + X2 (X1 + . . . + Xn)n − ∞
n 

= X1
2 + . . . + X2 

n − Y1
2 . 

But the orthogonal transformation V preserves the length 

Y 2 + + Y 2 = X1
2 + + X2 

1 n n· · · · · ·

and, therefore, we get 

¯ ¯n(X2 − (X)2) = Y 2 + . . . + Yn 
2 − Y1

2 = Y 2 + . . . + Y 2 . (15.2)1 2 n 

Equations (15.1) and (15.2) show that sample mean and sample variance are inde­
¯pendent since Y1 and (Y2, . . . , Yn) are independent, 

∞
nX = Y1 has standard normal 

¯distribution and n(X̄2 − (X)2) has α2 
n−1 distribution since Y2, . . . , Yn are independent 
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standard normal. 

Consider now the case when 

X1, . . . , Xn ∩ N(ϕ, δ2) 

Z

are i.i.d. normal random variables with mean ϕ and variance δ2 . In this case, we 
know that 

1 = 
X1 − ϕ 

n = 
Xn − ϕ ∩ N(0, 1)

δ
, · · · , Z

δ 
are independent standard normal. Theorem applied to Z1, . . . , Zn gives that 

n ¯
¯

∞
nZ = 

∞
n 

1 � Xi − ϕ 
= 

∞
n(X − ϕ) ∩ N(0, 1) 

n δ δ 
i=1 

and 

n(Z̄2 − (Z̄)2) = n 
� 1 �� Xi − ϕ�2 � 1 � Xi − ϕ�2� 

n δ 
− 

n δ 
n �21 �� Xi − ϕ 1 � Xi − ϕ 

= n 
n δ 

− 
n δ 

i=1 

X̄2 X)2¯− ( ∩ α2 = n 
δ2 n−1. 
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Lecture 16


16.1 Fisher and Student distributions. 

Consider X1, . . . , Xk and Y1, . . . , Ym all independent standard normal r.v. 
Definition: Distribution of the random variable 

X1
2 + . . . + X2 

Z = k 

Y 2 + . . . + Y 2 
1 m 

F
is called Fisher distribution with degree of freedom k and m, and it is denoted as 

k,m. 
Let us compute the p.d.f. of Z. By definition, the random variables 

X = X1
2 + . . . + X2 ∩ α2 and Y = Y1

2 + . . . + Y 2 
k k m ∩ α2 

m 

have α2 distribution with k and m degrees of freedom correspondingly. Recall that α2 
k 

k 1distribution is the same as gamma distribution � 
2 , which means that we know 

2 

the p.d.f. of X and Y : 

X has p.d.f. f(x) = 
( 1 

2 ) 
k 
2 

�( k 
2 ) 

x

k 
2
−1 e− 1

2
x and Y has p.d.f. g(y) =


( 1 
2 ) 

m 
2 

�( m 
2 ) 

y

m 
2
−1 e− 1

2
y , 

Xfor x → 0 and y → 0. To find the p.d.f of the ratio 
Y , let us first recall how to write 

its cumulative distribution function. Since X and Y are always positive, their ratio 
is also positive and, therefore, for t 0 we can write: → 

� 
� X 

Y 
∀ t 

� 
= � (X ∀ tY ) = 

� 

� ∗ � ∗ 

{I(X ∀ tY )} 

= 
0 0 

I(x ∀ ty)f(x)g(y)dxdy 
� ∗�� ty � 

= f(x)g(y)dx dy 
0 0 

60
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X 

Y 

0X<=tY 
0

Y 

X=tY 

Figure 16.1: Cumulative Distribution Function. 

where f (x)g(y) is the joint density of X, Y. Since we integrate over the set {x ∀ ty}
the limits of integration for x vary from 0 to ty (see also figure 16.1). 

Since p.d.f. is the derivative of c.d.f., the p.d.f. of the ratio X/Y can be computed 
as follows: 

� tyd � X � d 
� ∗ � ∗ 

� ∀ t = f (x)g(y)dxdy = f (ty)g(y)ydy 
dt Y dt 0 0 0 

k m 
2

� ∗ 
2

2 −1k 1
2 ty ( 

1
2 ) m 

= 
( 1

2 )

�( k 
2 )

(ty) y 2 −1 e− 1
2 y ydy e− 

�( m 
2 )0 

k+m 
2 k 

2 −1 

� ∗ 
1 

2= 
�( k 

2 )�( m 

( 1
2 ) t y( k+m )−1 e− 

2 ) 0 

2 (t+1)y dy 
� ⎛� � 

The function in the underbraced integral almost looks like a p.d.f. of gamma distri­
bution �(ϕ, λ) with parameters ϕ = (k + m)/2 and λ = 1/2, only the constant in 
front is missing. If we miltiply and divide by this constant, we will get that, 

( 1 
2 ) 

k+m 
( 1 

2 (t + 1)) 
k+m 

2 k 
2 −1 

( 1
2 (t + 1)) 

2 1�( k+m ) 
� ∗d � X � 

2� ∀ t = t 2 y( k+m )−1 e−
k+mdt Y �( k 

2 )�( m 
2 ) 2 0 �( k+m ) 

2 (t+1)y dy 

�( 
2 

k+m ) k+m2 k 
2 −1= 

�( k 
2 )�( m t (1 + t) 2 , 

2 ) 

since we integrate a p.d.f. and it integrates to 1. 
To summarize, we proved that the p.d.f. of Fisher distribution with k and m 

degrees of freedom is given by 

�( k+m ) k+m 
fk,m(t) = 

�( k 
2 )�( m 

2 k 
2 −1

2 .t (1 + t)− 

2 ) 
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Next we consider the following

Definition. The distribution of the random variable


X1
Z = � 

1 (Y 2 + + Y 2 
1 m)

m · · ·

is called the Student distribution or t-distribution with m degrees of freedom and it 
is denoted as tm. 

Let us compute the p.d.f. of Z. First, we can write, 

� X2 t2 �
2 1� (−t ∀ Z ∀ t) = � (Z2 ∀ t ) = � . 

Y 2 + + Y 2 
1 m 

∀ 
m· · ·

If fZ (x) denotes the p.d.f. of Z then the left hand side can be written as 

� t 

� (−t ∀ Z ∀ t) = fZ (x)dx. 
−t 

X2 
1On the other hand, by definition, 

Y 2+...+Y 2 has Fisher distribution F1,m with 1 and 
1 m 

m degrees of freedom and, therefore, the right hand side can be written as 

2t
m 

f1,m(x)dx. 
0 

We get that, 
2t� t � 

m 

fZ (x)dx = f1,m(x)dx. 
0−t 

Taking derivative of both side with respect to t gives 

t2 2t 
fZ (t) + fZ (−t) = f1,m( ) . 

m m 

But fZ (t) = fZ (−t) since the distribution of Z is obviously symmetric, because the 
numerator X has symmetric distribution N (0, 1). This, finally, proves that 

m+1 t t2 t �( m+1 ) � t2 �−1/2� t2 �− 
2 �( m+1 ) 1 t2 

m+12 2 .fZ (t) = 
m

f1,m( 
m 

) = 
m �( 1 

2

2 ) m 
1+ 

m 
= 

�( 1
2 ) 

∞
m 

(1+ 
m 

)− 

2 )�( m 
2 )�( m 



Lecture 17


17.1	 Confidence intervals for parameters of nor­

mal distribution. 

We know by LLN that sample mean and sample variance converge to mean ϕ and 
variance δ2: 

¯ ¯X ≈ ϕ, X̄2 − (X)2 ≈ δ2 . 

In other words, these estimates are consistent. In this lecture we will try to describe 
precisely, in some sense, how close sample mean and sample variance are to these 
unknown parameters that they estimate. 

Let us start by giving a definition of a confidence interval in our usual setting 
when we observe a sample X1, . . . , Xn with distribution � ν0 from a parametric family 

� ν : χ ⊆ �}, and χ0 is unkown. {
Definition: Given a parameter ϕ ⊆ [0, 1], which we will call confidence level, if 

there are two statistics 

S1 = S1(X1, . . . , Xn) and S2 = S2(X1, . . . , Xn) 

such that the probability 

� ν0 (S1 ∀ χ0 ∀ S2) = ϕ, ( or → ϕ) 

then we call the interval [S1, S2] a confidence interval for the unknown parameter χ0 

with the confidence level ϕ. 
This definition means that we can garantee with probability/confidence ϕ that 

our unknown parameter lies within the interval [S1, S2]. We will now show how in 
the case of normal distribution N(ϕ, δ2) we can use the estimates (sample mean and 
sample variance) to construct the confidence intervals for unknown ϕ0 and δ0

2 . 
Let us recall from the lecture before last that we proved that when 

X1, . . . , Xn are i.d.d. with distribution ∩ N(ϕ0, δ0
2) 

63 
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then 
¯ ¯n(X̄2 − (X)2) ∩ α2A = 

∞
n(X − ϕ0) ∩ N(0, 1) and B = 

δ0 δ0
2 n−1 

and the random variables A and B are independent. If we recall the definition of α2 

distribution, this mean that we can represent A and B as 

A = Y1 and B = Y2
2 + . . . + Y 2 

n 

for some Y1, . . . , Yn i.d.d. standard normal. 

α 

C1 C2 

PDF 

− Confidence Level 

(1−α) 
2 

(1−α) 
2 

Ψ 
2 

N−1 (1−α) 
2 

Figure 17.1: P.d.f. of α2 
n−1 distribution and ϕ confidence interval.


First, if we look at the p.d.f. of α2

n−1 distribution (see figure 17.1) and choose the 

constants c1 and c2 so that the area in each tail is (1 − ϕ)/2, since the area represents 
the probability of the corresponding interval, we get that, 

� (B ∀ c1) =
1 − ϕ 

and � (B c2) = 
1 − ϕ

. 
2 

→ 
2 

The remaining probability is 

� (c1 ∀ B ∀ c2) = ϕ, 

which means that we can garantee with probability ϕ that 

¯
c

n(X̄2 − (X)2) ∀ c2.1 ∀ 
δ2 

0 

Solving this for δ2 gives 0 

¯ ¯n(X̄2 − (X)2) ∀ δ0
2 ∀ 

n(X̄2 − (X)2) 
c

. 
2 c1 
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This precisely means that the interval 

¯ ¯ ¯� n(X̄2 − (X)2) n(X2 − (X)2) � 
, 

c2 c1 

is the ϕ confidence interval for the unknown variance δ0
2 . 

Next, let us construct the confidence interval for the mean ϕ0. Consider the fol­
lowing expression, 

A Y1 
= 

1 1 
n−1 B 

n−1 (Y2
2 + . . . + Yn 

2) 
∩ tn−1 

which, by definition, has t-distribution with n − 1 degrees of freedom. On the other 
hand, 

¯(X −ϕ0 ) ¯A 
∞

n
π0 

X − ϕ0 
= = . 

¯
� 

1 
� 

1 n(X̄2 −(X)2 ) 
� 

1 X̄2 − ( ¯B 
π2 n−1 ( X)2)n−1 n−1 0 

If we now look at the p.d.f. of tn−1 distribution (see figure 17.2) and choose the 
constants −c and c so that the area in each tail is (1 − ϕ)/2, (the constant is the same 
on each side because the distribution is symmetric) we get that with probability ϕ, 

α 

−C C 

PDF 

(1−α) 
2 

(1−α) 
2 

Figure 17.2: tn−1 distribution. 

X̄ − ϕ0 −c ∀ 
1 X̄2 X)2) 

∀ c 
¯

n−1 ( − ( 

and solving this for ϕ0, we get the confidence interval 

1 1¯ ¯ ¯ ¯X − c
n − 1

(X̄2 − (X)2) ∀ ϕ0 ∀ X + C
n − 1

(X̄2 − (X)2). 
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Example. (Textbook, Section 7.5, p. 411). Consider a normal sample of size 
n = 10 : 

0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58. 

We compute the estimates 

¯ ¯ ¯X = 1.379 and X2 − (X)2 = 0.0966. 

Choose confidence level ϕ = 95% = 0.95. 
We have to find c1, c2 and c as explained above. Using the table for t9 distribution 

on page 776, we need to find c such that 

t9(−≤, c) = 0.975 

which gives us c = 2.262. To find c1 and c2 we can use α2 table on page 774, 9 

α2 
9([0, c1]) = 0.025 ≥ c1 = 2.7 

α2 
9([0, c2]) = 0.975 ≥ c2 = 19.02. 

Plugging these into the formulas above, with probability 95% we can garantee 
that 

1 1¯ ¯ ¯ ¯(X̄2 − (X)2) ∀ ϕ0 ∀ X + c (X̄2 − (X)2)X − c 
9 9 

0.6377 ∀ ϕ0 ∀ 2.1203 

and with probability 95% we can garantee that 

¯ ¯n(X̄2 − (X)2) ∀ δ0
2 ∀ 

n(X̄2 − (X)2) 
c2 c1 

or 
0.0508 ∀ δ0

2 ∀ 0.3579. 

These confidence intervals may not look impressive but the sample size is very small 
here, n = 10. 
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Testing hypotheses. 

(Textbook, Chapter 8) 

18.1 Testing simple hypotheses. 

Let us consider an i.i.d. sample X1, . . . , Xn with distribution � on some space X , i.e. 
X’s take values in X . Suppose that we don’t know � but we know that it can only 
be one of possible k distributions, � ⊆ { � 1, . . . , � .k}

Based on the data X, . . . , Xn we have to decide among k simple hypotheses: 

H
H1 : � = � 1 

2 : � = � 2 
. . 

H
. 
k : � = � k 

We call these hypotheses simple because each hypothesis asks a simple question about 
whether � is equal to some particular specified distribution. 

To decide among these hypotheses means that given the data vector, 

X = (X1, . . . , Xn) ⊆ X n 

we have to decide which hypothesis to pick or, in other words, we need to find a 
decision rule which is a function 

β : X n .≈ {H1, · · · , Hk}

Let us note that sometimes this function β can be random because sometimes several 
hypotheses may look equally likely and it will make sense to pick among them ran­
domly. This idea of a randomized decision rule will be explained more clearly as we 
go on, but for now we can think of β as a simple function of the data. 

67 
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Suppose that the ith hypothesis is true, i.e. � = � i. Then the probability that 
decision rule β will make an error is 

� (β = Hi|Hi) = � i(β = Hi),⇒ ⇒ 

which we will call error of type i or type i error. 
In the case when we have only two hypotheses H1 and H2 the error of type 1 

ϕ1 = � 1(β = H1)⇒ 

is also called size or level of significance of decision rule β and one minus type 2 error 

λ = 1 − ϕ2 = 1 − � 2(β = H2) = � 2(β = H2)⇒ 

is called the power of β. 
Ideally, we would like to make errors of all types as small as possible but it is clear 

that there is a trade-off among them because if we want to decrease the error of, say, 
type 1 we have to predict hypothesis 1 more often, for more possible variations of 
the data, in which case we will make a mistake more often if hypothesis 2 is actually 
the true one. In many practical problems different types of errors have very different 
meanings. 

Example. Suppose that using some medical test we decide is the patient has 
certain type of decease. Then our hypotheses are: 

H1 : positive; H2 : negative. 

Then the error of type one is 
� (β = H2 H1),|

i.e. we predict that the person does not have the decease when he actually does and 
error of type 2 is 

� (β = H1 H2),|
i.e. we predict that the person does have the decease when he actually does not. 
Clearly, these errors are of a very different nature. For example, in the first case the 
patient will not get a treatment that he needs, and in the second case he will get 
unnecessary possibly harmful treatment when he doesn not need it, given that no 
additional tests are conducted. 

Example. Radar missile detection/recognition. Suppose that an image on the 
radar is tested to be a missile versus, say, a passenger plane. 

H1 : missile, H2 : not missile. 

Then the error of type one 
� (β = H2 H1),|



69 LECTURE 18. TESTING HYPOTHESES. 

means that we will ignore a missile and error of type 2 

� (β = H2 H1),|

means that we will possibly shoot down a passenger plane (which happened before). 
Another example could be when guilty or not guilty verdict in court is decided 

based on some tests and one can think of many examples like this. Therefore, in many 
situations it is natural to control certain type of error, give garantees that this error 
does not exceed some acceptable level, and try to minimize all other types of errors. 
For example, in the case of two simple hypotheses, given the largest acceptable error 
of type one ϕ ⊆ [0, 1], we will look for a decision rule in the class 

Kϕ = {β : ϕ1 = � 1(β = H1) ∀ ϕ}⇒ 

and try to find β ⊆ Kϕ that makes the error of type 2, ϕ2 = � 2(β = H2), as small as ⇒
possible, i.e. maximize the power. 

18.2 Bayes decision rules. 

We will start with another way to control the trade-off among different types of errors 
that consists in minimizing the weighted error. 

Given hypotheses H1, . . . , Hk let us consider k nonnegative weights �(1), . . . , �(k) 
that add up to one 

�k �(i) = 1. We can think of weights � as an apriori probability i=1 
on the set of our hypotheses that represent their relative importance. Then the Bayes 
error of a decision rule β is defined as 

k k � � 
ϕ(�) = �(i)ϕi = �(i) � i(β = Hi),⇒

i=1 i=1 

which is simply a weighted error. Of course, we want to make this weigted error as 
small as possible. 

Definition: Decision rule β that minimizes ϕ(�) is called Bayes decision rule. 
Next theorem tells us how to find this Bayes decision rule in terms of p.d.f. or p.f. 

or the distributions � i. 
Theorem. Assume that each distribution � i has p.d.f or p.f. fi(x). Then 

β = Hj if �(j)fj (X1) . . . fj (Xn) = max �(i)fi(X1) . . . fi(Xn) 
1�i�k 

is the Bayes decision rule. 
In other words, we choose hypotheses Hj if it maximizes the weighted likelihood 

function 
�(i)fi(X1) . . . fi(Xn) 



70 LECTURE 18. TESTING HYPOTHESES. 

among all hypotheses. If this maximum is achieved simultaneously on several hy­
potheses we can pick any one of them, or at random. 

Proof. Let us rewrite the Bayes error as follows: 

k 

ϕ(�) = 
� 

i=1 

�(i) � i(β ⇒ = Hi) 

k � 
� 

= 
i=1 

�(i) I(β ⇒ = Hi)fi(x1) . . . fi(xn)dx1 . . . dxn 

� k � � � 
= 

i=1 

�(i)fi(x1) . . . fi(xn) 1 − I(β = Hi) dx1 . . . dxn 

k � 
= 

� 
�(i) fi(x1) . . . fi(xn)dx1 . . . dxn 

i=1 � ⎛� � 
this joint density integrates to 1 and 

� 
�(i) = 1 

� k 

− 
� 

i=1 

�(i)fi(x1) . . . fi(xn)I(β = Hi)dx1 . . . dxn 

� k � 
= 1 − 

i=1 

�(i)fi(x1) . . . fi(xn)I(β = Hi)dx1 . . . dxn. 

To minimize this Bayes error we need to maximize this last integral, but we can 
actually maximize the sum inside the integral 

�(1)f1(x1) . . . f1(xn)I(β = H1) + . . . + �(k)fk(x1) . . . fk (xn)I(β = Hk ) 

by choosing β appropriately. For each (x1, . . . , xn) decision rule β picks only one 
hypothesis which means that only one term in this sum will be non zero, because if 
β picks Hj then only one indicator I(β = Hj ) will be non zero and the sum will be 
equal to 

�(j)fj (x1) . . . fj (xn). 

Therefore, to maximize the integral β should simply pick the hypothesis that maxi­
mizes this expression, exactly as in the statement of the Theorem. This finishes the 
proof. 



Lecture 19


In the last lecture we found the Bayes decision rule that minimizes the Bayes eror 

k k �� 
ϕ = �(i)ϕi = �(i) � i(β = Hi).⇒

i=1 i=1 

Let us write down this decision rule in the case of two simple hypothesis H1, H2. For 
simplicity of notations, given the sample X = (X1, . . . , Xn) we will denote the joint 
p.d.f. by 

fi(X) = fi(X1) . . . fi(Xn). 

Then in the case of two simple hypotheses the Bayes decision rule that minimizes the 
Bayes error 

ϕ = �(1) � 1(β = H1) + �(2) � 2(β = H2)⇒ ⇒ 
is given by ⎞

⎟ 

⎠


H1 : �(1)f1(X) > �(2)f2(X) 
β = H2 : �(2)f2(X) > �(1)f1(X) 

H1 or H2 : �(1)f1(X) = �(2)f2(X) 

or, equivalently, 

= 

⎞ 
⎧⎟ 

⎧⎠


f1(X) �(2)>H1 : f2(X) �(1) 

β H2 : 
f1(X) �(2)<
f2(X) �(1) (19.1) 
f1(X)H1 or H2 : f2(X) = �(2) 

�(1) 

1 0 =(Here 
0 +≤, 

1 = 0.) This kind of test if called likelihood ratio test since it is 
expressed in terms of the ratio f1(X)/f2(X) of likelihood functions. 

H
Example. Suppose we have only one observation X1 and two simple hypotheses 

1 : � = N(0, 1) and H2 : � = N(1, 1). Let us take an apriori distribution given by 

1 1 
�(1) = and �(2) = ,

2 2 
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i.e. both hypothesis have equal weight, and find a Bayes decision rule β that minimizes 

1 1� 1(β = H1) + � 2(β = H2)
2 

⇒ 
2 

⇒ 

Bayes decision rule is given by: 

β(X1) = 

⎞ 
⎧⎟ 

⎧⎠


f1(X) 

H

H1 : f2(X) > 1 

2 : 
f1(X) < 1
f2(X) 
f1(X)H1 or H2 : = 1 
f2(X) 

This decision rule has a very intuitive interpretation. If we look at the graphs of these 
p.d.f.s (figure 19.1) the decision rule picks the first hypothesis when the first p.d.f. is 
larger, to the left of point C, and otherwise picks the second hypothesis to the right 
of point C. 

C H2H1 
1 

X1 

0 

PDF 

f2f1 

Figure 19.1: Bayes Decision Rule. 

Example. Let us now consider a similar but more general example when we 
have a sample X = n), two simple hypotheses H1 : � = N(0, 1) and (X1, · · · , X
H2 : � = N(1, 1), and arbitrary apriori weights �(1), �(2). Then Bayes decision rule 
is given by (19.1). The likelihood ratio can be simplified: 

f1(X) 1 1 
i=

(
∞

2ν)n 
e− 

2 

P 
X2 

(
∞

2ν)n 
e− 1 1 

2 

P

(Xi −1)2 

f2(X) 
1 n 
2 

P

i
k 
=1 ((Xi −1)2 −Xi 

2 ) 
2 −

P 
Xi= e = e 

Therefore, the decision rule picks the first hypothesis H1 when 

n 
2 −

P 
Xi 

�(2) 
e > 

�(1) 
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or, equivalently, 
� n �(2)

Xi < 
2 
− log . 

�(1) 

Similarly, we pick the second hypothesis H2 when 

� n �(2)
Xi > 

2 
− log . 

�(1) 

In case of equality, we pick any one of H1, H2. 

19.1	 Most powerful test for two simple hypothe­

ses. 

Now that we learned how to construct the decision rule that minimizes the Bayes 
error we will turn to our next goal which we discussed in the last lecture, namely, 
how to construct the decision rule with controlled error of type 1 that minimizes error 
of type 2. Given ϕ ⊆ [0, 1] we consider the class of decision rules 

Kϕ = {β : � 1(β = H1) ∀ ϕ}⇒ 

and will try to find β ⊆ Kϕ that makes the type 2 error ϕ2 = � 2(β = H2) as small as ⇒
possible. 

Theorem: Assume that there exist a constant c, such that 

� f1(X) � 
� 1 < c = ϕ. 

f2(X) 

Then the decision rule 
H1 : 

f1(X) c
f2(X) → 

(19.2)
H

β = f1(X) 
2 : f2(X) < c 

is the most powerful in class Kϕ. 
Proof. Take �(1) and �(2) such that 

�(2)
�(1) + �(2) = 1, = c,

�(1) 

i.e. 
1	 c 

�(1) = and �(2) = . 
1 + c 1 + c 



74 LECTURE 19. 

Then the decision rule β in (19.2) is the Bayes decision rule corresponding to weights 
�(1) and �(2) which can be seen by comparing it with (19.1), only here we break the 
tie in favor of H1. Therefore, this decision rule β minimizes the Bayes error which 
means that for any other decision rule β∈, 

�(1) � 1(β = H1) + �(2) � 2(β = H2) ∀ �(1) � 1(β
∈ = H1) + �(2) � 2(β

∈ = H2). (19.3)⇒ ⇒ ⇒ ⇒ 

By assumption in the statement of the Theorem, we have 
� f1(X) � 

� 1(β = H1) = � 1 < c = ϕ, ⇒ 
f2(X) 

which means that β comes from the class Kϕ. If β∈ ⊆ Kϕ then 

� 1(β
∈ = H1) ∀ ϕ⇒ 

and equation (19.3) gives us that 

�(1)ϕ + �(2) � 2(β = H2) ∀ �(1)ϕ + �(2) � 2(β
∈ = H2)⇒ ⇒ 

and, therefore, 
� 2(β = H2) ∀ � 2(β

∈ = H2).⇒ ⇒ 
This exactly means that β is more powerful than any other decision rule in class Kϕ. 

Example. Suppose we have a sample X = (X1, . . . , Xn) and two simple hypothe­
ses H1 : � = N(0, 1) and H2 : � = N(1, 1). Let us find most powerful β with the 
error of type 1 

ϕ1 ∀ ϕ = 0.05. 

According to the above Theorem if we can find c such that 
� f1(X) � 

� 1 < c = ϕ = 0.05 
f2(X) 

then we know how to find β. Simplifying this equation gives 
�� n � 

� 1 Xi > 
2 
− log c = ϕ = 0.05 

or 

� 1 

� 1 � 1 n � 
Xi > c∈ = (

2 
− log c) = ϕ = 0.05.∞

n 
∞

n 

But under the hypothesis H1 the sample comes from standard normal distribution 
� 1 = N(0, 1) which implies that the random variable 

1 � 
Y = Xi∞

n 
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is standard normal. We can look up in the table that 

� (Y > c∈) = ϕ = 0.05 ≥ c
∈ = 1.64 

and the most powerful test β with level of significance ϕ = 0.05 will look like this:


� 
X1 ≥

n H 64i ∀ 1.

i > 1.64. 
1 : 

β = � 
X1≥

n H2 : 

Now, what will the error of type 2 be for this test? 

ϕ2 = � 2(β = H2) = � 2 

� 
∞1 

n 

� 
Xi ∀ 1.64 

� 
⇒ 

n� 1 �� 
= � 2 ∞

n 
(Xi − 1) ∀ 1.64 −∞

n . 
i=1 

The reason we subtracted 1 from each Xi is because under the second hypothesis X’s 
have distribution N(1, 1) and random variable 

n
1 � 

Y = (Xi − 1)∞
n 

i=1 

will be standard normal. Therefore, the error of type 2 for this test will be equak to 
the probability � (Y < 1.64 − ∞

n). For example, when the sample size n = 10 this 
will be 

ϕ2 = � (Y < 1.64 −
∞

10) = 0.087 

from the table of normal distribution. 



�


�
 �


Lecture 20


20.1 Randomized most powerful test. 

In theorem in the last lecture we showed how to find the most powerful test with level 
of significance ϕ (which means that β ⊆ Kϕ), if we can find c such that 

� f1(X)� 1 < c = ϕ. 
f2(X) 

This condition is not always fulfiled, especially when we deal with discrete distribu­
tions as will become clear from the examples below. But if we look carefully at the 
proof of that Theorem, this condition was only necessary to make sure that the like­
lihood ratio test has error of type 1 exactly equal to ϕ. In our next theorem we will 
show that the most powerful test in class Kϕ can always be found if one randomly 
breaks the tie between two hypotheses in a way that ensures that the error of type 
one is equal to ϕ. 

Theorem. Given any ϕ ⊆ [0, 1] we can always find c ⊆ [0, ≤) and p ⊆ [0, 1] such 
that 

� f1(X) � f1(X)� < c
 + (1 − p) � = ϕ. (20.1)
= c1 1
f2(X) f2(X) 

In this case, the most powerful test β ⊆ Kϕ is given by 

β =


⎞ 
⎧⎟ 

⎧⎠


f1(X)H1 : f2(X) > c 

H2 : 
f1(X) < c 
f2(X) 
f1(X)H1 or H2 : = c
f2(X) 

where in the last case of equality we break the tie at random by choosing H1 with 
probability p and choosing H2 with probability 1 − p. 

This test β is called a randomized test since we break a tie at random if necessary. 

76 
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Proof. Let us first assume that we can find c and p such that (20.1) holds. Then 
the error of type 1 for the randomized test β above can be computed: 

� f1(X) � � f1(X) � 
ϕ1 = � 1(β = H1) = � 1 < c + (1 − p) � 1 = c = ϕ (20.2)⇒ 

f2(X) f2(X) 

since β does not pick H1 exactly when the likelihood ratio is less than c or when it is 
equal to c in which case H1 is not picked with probability 1 − p. This means that the 
randomized test β ⊆ Kϕ. The rest of the proof repeats the proof of the last Theorem. 
We only need to point out that our randomized test will still be Bayes test since in 
the case of equality 

f1(X) 
= c 

f2(X) 

the Bayes test allows one to break the tie arbitrarily and we choose to break it 
randomly in a way that ensures that the error of type one will be equal to ϕ, as in 
(20.2). 

The only question left is why we can always choose c and p such that (20.1) is 
satisfied. If we look at the function 

� f1(X) � 
F (t) = � < t 

f2(X) 

as a function of t, it will increase from 0 to 1 as t increases from 0 to ≤. Let us keep in 
mind that, in general, F (t) might have jumps. We can have two possibilities: either 
(a) at some point t = c the function F (c) will be equal to ϕ, i.e. 

� f1(X) � 
F (c) = � < c = ϕ 

f2(X) 

or (b) at some point t = c it will jump over ϕ, i.e. 

� f1(X) � 
F (c) = � < c < ϕ 

f2(X) 

but 
� f1(X) � � f1(X) � 

� 
f2(X) 

∀ c = F (c) + � = c ϕ. 
f2(X) 

→ 

Then (20.1) will hold if in case (a) we take p = 1 and in case (b) we take 

� � f1(X) � 
1 − p = (ϕ − F (c)) � = c . 

f2(X) 
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Example. Suppose that we have one observation X with Bernoulli distribution 
and two simple hypotheses about the probability function f(X) are 

H

H1 : f1(X) = 0.2X 0.81−X 

2 : f2(X) = 0.4X 0.61−X . 

Let us take the level of significance ϕ = 0.05 and find the most powerful β ⊆ K0.05. 
In figure 20.1 we show the graph of the function 

� f1(X) � 
F (c) = � 1 < c . 

f2(X) 

Let us explain how this graph is obtained. First of all, the likelihood ratio can take 

C 

1 

0.2 

1/2 4/3 

Figure 20.1: Graph of F (c). 

only two values: 
f1(X) 

� 
1/2 if X = 1 

= 
f2(X) 4/3 if X = 0. 

If c ∀ 1 then the set 
2 

� f1(X) � 
< c = � is empty and F (c) = � 1(�) = 0,

f2(X) 

if 1 < c ∀ 4 then the set 
2 3 

� f1(X) � 
< c = {X = 1} and F (c) = � 1(X = 1) = 0.2 

f2(X)


< c then the set

3 
4and, finally, if 

� f1(X) � 
< c = {X = 0 or 1} and F (c) = � 1(X = 0 or 1) = 1,

f2(X) 
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as shown in figure 20.1. The function F (c) jumps over the level ϕ = 0.05 at the point 
c = 1/2. To determine p we have to make sure that the error of type one is equal to 
0.05, i.e. 

� f1(X) 
1 

� f1(X) 
f2(X) 

= c = 0 + (1 − p)0.2 = 0.05� < c
 + (1 − p) �1 
f2(X) 

3which gives that p = 
4 . Therefore, the most powerful test of size ϕ = 0.05 is 

β =


⎞ 
⎧⎟ 

⎧⎠


f1 (X) 1> or X = 0 H1 : f2 (X) 2 

H2 : 
f1 (X) 1< or never 
f2 (X) 2 
f1 (X)H1 or H2 : f2 (X) = 1 or X = 1,

2 

where in the last case X = 1 we pick H1 with probability 3 or H2 with probability 1 .
4	 4 

20.2	 Composite hypotheses. Uniformly most pow­

erful test. 

We now turn to a more difficult situation then the one when we had only two simple 
hypotheses. We assume that the sample X1, . . . , Xn has distribution � ν0 that comes 
from a set of probability distributions { � ν, χ ⊆ �}. Given the sample, we would 
like to decide whether unknown χ0 comes from the set �1 or �2, in which case our 
hypotheses will be 

H1 : χ ⊆ �1 ∼ � 

H2 : χ ⊆ �2 ∼ �. 

Given some decision rule β, let us consider a function 

�(β, χ) = � ν (β = H1) as a function of χ, ⇒ 

which is called the power function of β. The power function has different meaning 
depending on whether χ comes from �1 or �2, as can be seen in figure 20.2. 

For χ ⊆ �1 the power function represents the error of type 1, since χ actually 
comes from the set in the first hypothesis H1 and β rejects H1. If χ ⊆ �2 then the 
power function represents the power, or one minus error of type two, since in this 
case χ belongs to a set from the second hypothesis H2 and β accepts H2. Therefore, 
ideally, we would like to minimize the power function for all χ ⊆ �1 and maximize it 
for all χ ⊆ �2. 

Consider 
ϕ1(β) = sup �(β, χ) = sup � ν (β = H1) 

ν≤�1 ν≤�1 

⇒ 
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Π(δ, θ) 

θ 

α 

0 Θ2Θ1 

Maximize in RegionΘ2Π 

Minimize Π in Θ1 Region 

Figure 20.2: Power function. 

which is called the size of β and which represents the largest possible error of type 1. 
As in the case of simple hypotheses it often makes sense to control this largest possible 
error of type one by some level of significance ϕ ⊆ [0, 1] and to consider decision rules 
from the class 

Kϕ = {β; ϕ1(β) ∀ ϕ}. 
Then, of course, we would like to find the decision rule in this class that also maximizes 
the power function on the set �2, i.e. miminizes the errors of type 2. In general, the 
decision rules β, β∈ ⊆ Kϕ may be incomparable, because in some regions of �2 we might 
have �(β, χ) > �(β∈, χ) and in other regions �(β∈, χ) > �(β, χ). Therefore, in general, 
it may be impossible to maximize the power function for all χ ⊆ �2 simultaneously. 
But, as we will show in the next lecture, under certain conditions it may be possible 
to find the best test in class Kϕ that is called the uniformly most powerful test. 

Definition. If we can find β ⊆ Kϕ such that 

�(β, χ) → �(β∈, χ) for all χ ⊆ �2 and all β∈ ⊆ Kϕ 

then β is called the Uniformly Most Powerful (UMP) test. 



Lecture 21


21.1 Monotone likelihood ratio. 

In the last lecture we gave the definition of the UMP test and mentioned that under 
certain conditions the UMP test exists. In this section we will describe a property 
called monotone likelihood ratio which will be used in the next section to find the 
UMP test for one sided hypotheses. � 

Suppose the parameter set � ∼ is a subset of a real line and that probability 
distributions � ν have p.d.f. or p.f. f(x χ). Given a sample X = (X1, . . . , Xn), the|
likelihood function (or joint p.d.f.) is given by 

n ⎭ 
|f(X χ) = f(Xi χ). 

i=1 

|

Definition: The set of distributions { � ν , χ ⊆ �} has Monotone Likelihood Ratio 
(MLR) if we can represent the likelihood ratio as 

f(X χ1)|
= V (T (X), χ1, χ2)

f(X χ2)|
and for χ1 > χ2 the function V (T, χ1, χ2) is strictly increasing in T . 

Example. Consider a family of Bernoulli distributions {B(p) : p ⊆ [0, 1]}, in 
which case the p.f. is qiven by 

f(x p) = p x(1 − p)1−x|
and for X = (X1, . . . , Xn) the likelihood function is 

f(X p) = p
P 

Xi (1 − p)n−
P 

Xi .|
We can write the likelihood ratio as folows: 

f(X p1) p
P 

Xi (1 − p1)
n−

P 
Xi � 1 − p1 

�n� p1(1 − p2)1|
= P 

Xi 
= 

�P 
Xi 

. 
f(X p2) p (1 − p2)n−

P 
Xi 1 − p2 p2(1 − p1)2

|

81 
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For p1 > p2 we have 
p1(1 − p2) 

> 1 
p2(1 − p1) 

and, therefore, the likelihood ratio is strictly increasing in T = 
�n Xi. �i=1 

Example. Consider a family of normal distributions {N(µ, 1) : µ ⊆ } with 
variance δ2 = 1 and unknown mean µ as a parameter. Then the p.d.f. is 

1 (x−µ)2 

2f(x µ) = ∞
2ν

e−|

and the likelihood 
1 

f(X µ) =
(
∞

2

1 

ν)n 
e− 

2 

Pn
i=1(Xi −µ)2 

.|

Then the likelihood ratio can be written as 

1 1 n 2 2f(X|µ1)
= e− 

2 

Pn 
2 

Pn+i=1(Xi −µ1 )2 
i=1(Xi −µ2 )2 (µ1 −µ2 ) 

P 
Xi − 

2 (µ1 −µ2 ).= e
f(X µ2)|

For µ1 > µ2 the likelihood ratio is increasing in T (X) = 
�n Xi and MLR holds. i=1 

21.2 One sided hypotheses. 
� 

Consider χ0 ⊆ � ∼ and consider the following hypotheses: 

H1 : χ ∀ χ0 and H2 : χ > χ0 

which are called one sided hypotheses, because we hypothesize that the unknown 
parameter χ is on one side or the other side of some threshold χ0. We will show next 
that if MLR holds then for these hypotheses there exists a Uniformly Most Powerful 
test with level of significance ϕ, i.e. in class Kϕ. 

θ 
0 H1 H2 

θ0 

Figure 21.1: One sided hypotheses.
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Theorem. Suppose that we have Monotone Likelihood Ratio with T = T (X) and 
we consider one-sided hypotheses as above. For any level of significance ϕ ⊆ [0, 1], we� 
can find c ⊆ and p ⊆ [0, 1] such that 

� ν0 (T (X) > c) + (1 − p) � ν0 (T (X) = c) = ϕ. 

Then the following test β� will be the Uniformly Most Powerful test with level of 
significance ϕ:
 ⎞

⎟ 

⎠


H1 : T < c 
β� = H2 : T > c 

H1 or H2 : T = c 

where in the last case of T = c we randomly pick H1 with probability p and H2 with 
probability 1 − p. 

Proof. We have to prove two things about this test β�: 

1. β� ⊆ Kϕ, i.e. β� has level of significance ϕ, 

2. for any β ⊆ Kϕ, �(β�, χ) → �(β, χ) for χ > χ0, i.e. β� is more powerful on the 
second hypothesis that any other test from the class Kϕ. 

To simplify our considerations below let us assume that we don’t need to random­
ize in β�, i.e. we can take p = 1 and we have 

� ν0 (T (X) > c) = ϕ 

and the test β� is given by 

β� = 
H1 : T ∀ c 

T > c. H2 : 

Proof of 1. To prove that β� ⊆ Kϕ we need to show that 

�(β�, χ) = � ν (T > c) ∀ ϕ for χ ∀ χ0. 

Let us for a second forget about composite hypotheses and for χ < χ0 consider two 
simple hypotheses: 

h1 : � = � ν and h2 : � = � ν0 . 

For these simple hypotheses let us find the most powerful test with error of type 1 
equal to 

ϕ1 := � ν (T > c). 

We know that if we can find a threshold b such that 
� f(X χ)� ν 

|
χ

< b | = ϕ1
f(X 0) 
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then the following test will be the most powerful test with error of type one equal to 

� ϕ1:

f (X ν)
 b 

βν = 
h1 : f (X

|
ν0 ) →

f (X
|
ν)| < b h2 : f (X ν0 )|

This corresponds to the situation when we do not have to randomize. But the mono­
tone likelihood ratio implies that 

f(X χ) f(X χ0) 1 
b 
∈ V (T, χ

1 
> 0, χ) > 

f(X|
|
χ0) 

< b ∈ 
f(X

|
χ) b|

and, since χ0 > χ, this last function V (T, χ0, χ) is strictly increasing in T. Therefore, 
we can solve this inequality for T (see figure 21.2) and get that T > cb for some cb. 

V(T, θ , θ)0 

1/b 

T 
0 Cb 

Figure 21.2: Solving for T .


This means that the error of type 1 for the test βν can be written as


ϕ1 = � ν 

� f(X|χ) 
< b 

� 
= � ν (T > cb). 

f(X χ0)|

But we chose this error to be equal to ϕ1 = � ν (T > c) which means that cb should 
be such that 

� ν (T > cb) = � ν (T > c) ≥ c = cb. 

To summarize, we proved that the test 

h1 : T ∀ c 
βν = 

ϕ

h2 : T > c 

is the most powerful test with error of type 1 equal to 

1 = �(β�, χ) = � ν (T > c). 
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Let us compare this test βν with completely randomized test 

βrand h1 : with probability 1 − ϕ1 = 
h2 : with probability ϕ1, 

which picks hypotheses completely randomly regardless of the data. The error of type 
one for this test will be equal to 

ν (β
rand� = h2) = ϕ1, 

i.e. both tests βν and βrand have the same error of type one equal to ϕ1. But since βν 

is the most powerful test it has larger power than βrand . But the power of βν is equal 
to 

� ν0 (T > c) = ϕ 

and the power of βrand is equal to 

ϕ1 = � ν (T > c). 

Therefore, 
� ν (T > c) ∀ � ν0 (T > c) = ϕ 

and we proved that for any χ ∀ χ0 the power function �(β�, χ) ∀ ϕ which this proves 
1. 
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22.1 One sided hypotheses continued. 

It remains to prove the second part of the Theorem from last lecture. Namely, we 
have to show that for any β ⊆ Kϕ 

�(β�, χ) → �(β, χ) for χ > χ0. 

Let us take χ > χ0 and consider two simple hypotheses 

h1 : � = � ν0 and h2 : � = � ν . 

Let us find the most powerful test with error of type one equal to ϕ. We know that 
if we can find a threshold b such that 

� ν0 

� f(X|χ0) 
< b 

� 
= ϕ 

f(X χ)|
then the following test will be the most powerful test with error of type 1 equal to ϕ: 

� 
h1 : 

f (X ν0 )| b 
β f (X ν) 
ν = 

h2 : 
f (X

|
ν0 ) 

→
| < b 

f (X ν)|

But the monotone likelihood ratio implies that 

f(X χ0) f(X χ) 1 1 
f(X

|
χ) 

< b ∈ 
f(X|

|
χ0) 

>
b 
∈ V (T, χ, χ0) >

b|

and, since now χ > χ0, the function V (T, χ, χ0) is strictly increasing in T. Therefore, 
we can solve this inequality for T and get that T > cb for some cb. 

This means that the error of type 1 for the test βν can be written as 

� ν0 

� f(X|χ0) 
< b 

� 
= � ν0 (T > cb). 

f(X χ)|
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But we chose this error to be equal to ϕ = � ν0 (T > c) which means that cb should 
be such that 

� ν0 (T > cb) = � ν0 (T > c) ≥ c = cb. 

Therefore,we proved that the test 

h1 : T ∀ c 
βν = 

h2 : T > c 

is the most powerful test with error of type 1 equal to ϕ. 
But this test βν is exactly the same as β� and it does not depend on χ. This means 

that deciding between two simple hypotheses χ0 vs. χ one should always use the same 
most powerful decision rule β�. But this means that β� is uniformly most powerful test 
- what we wanted to prove. Notice that MLR played a key role here because thanks 
to MLR the decision rule βν was independent of χ. If βν was different for different χ 
this would mean that there is no UMP for composite hypotheses because it would be 
advantageous to use different decision rules for different χ. 

Example. Let us consider a family of normal distributions N(µ, 1) with unknown 
mean µ as a parameter. Given some µ0 consider one sided hypotheses 

H1 : µ ∀ µ0 and H2 : µ > µ0. 

As we have shown before the normal family N(µ, 1) has monotone likelihood ratio 
with T (X) = 

�n Xi. Therefore, the uniformly most powerful test with level of i=1 
significance ϕ will be as follows: 

� �n 

H
β� = 

H1 : i=1 Xi ∀ c 
2 : 

�n
i=1 Xi > c. 

The threshold c is determined by 

ϕ = � µ0 (T > c) = � µ0 ( 
� 

Xi > c). 

If the sample comes from N(µ0, 1) then T has distribution N(nµ0, n) and 

n
1 � 

Y = (Xi − µ0) ∩ N(0, 1)∞
n 

i=1 

is standard normal. Therefore, 

n n� c − nµ0 
� 

ϕ = � µ0 ( 
� 

Xi > c) = � Y = ∞1 
n 

� 
(Xi − µ0) > .µ0 ∞

n 
i=1 i=1 
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Therefore, if using the table of standard normal distribution we find cϕ such that 
� (Y > cϕ) = ϕ then 

c − nµ0 ∞
n 

= cϕ or c = µ0n + 
∞

ncϕ. 

Example. Let us now consider a family of normal distributions N(0, δ2) with 
variance δ2 as unknown parameter. Given δ2 we consider one sided hypotheses 0 

H1 : δ
2 ∀ δ0

2 and H2 : δ
2 > δ0

2 . 

Let us first check if MLR holds in this case. The likelihood ratio is 

1 Pn X2f(X δ2
2) 1 i=1 i 2�2 i=1 i 

e
f(X|

|
δ1

2)
=

(
∞

2νδ2)n 

− 
2�2 X2 � 1 

2 

(
∞

2νδ1)n 
e
− 1

1 

Pn 

1 1 P 
X2 1 1� δ1 

�n 
i

� δ1 
�n 

2�2 − 
2�2 2�2 − 

2�2 T 

δ
= e 1 2 = e 1 2 , 

2 δ2 

�nwhere T = i=1 Xi 
2 . When δ2 > δ2 the likelihood ratio is increasing in T and,2 1 

therefore, MLR holds. By the above Theorem, the UMP test exists and is given by 
� 

H1 : T = 
�n

i=1 Xi 
2 ∀ c 

β� = 
H2 : T = 

�n
i=1 X

2 > c i 

where the threshold c is determined by 

n n 
c � 

ϕ = � π2 ( 
� 

X2 > c) = � π2 

��� Xi 
�2 

> . 
0 i 0 δ0 δ2 

i=1 i=1 0 

When Xi ∩ N(o, δ0
2), Xi/δ0 ∩ N(0, 1) are standard normal and, therefore, 

n �2 

δ

�� Xi 

0 
n∩ α2 

i=1 

has α2 distribution with n degrees of freedom. If we find cϕ such that α2 
n(cϕ,≤) = ϕn 

then c = cϕδ0
2 . 



Lecture 23


23.1 Pearson’s theorem. 

Today we will prove one result from probability that will be useful in several statistical 
tests. 

Let us consider r boxes B1, . . . , Br as in figure 23.1 

... BrB1 B2 

Figure 23.1: 

Assume that we throw n balls X1, . . . , Xn into these boxes randomly independently 
of each other with probabilities 

� (Xi ⊆ B1) = p1, . . . , � (Xi ⊆ Br ) = pr , 

where probabilities add up to one p1 + . . . + pr = 1. Let ξj be a number of balls in 
the jth box: 

n � 
ξj = #{balls X1, . . . , Xn in the box Bj } = I(Xl ⊆ Bj ). 

l=1 

ξ

On average, the number of balls in the jth box will be npj , so random variable ξj 

should be close to npj . One can also use Central Limit Theorem to describe how close 
j is to npj . The next result tells us how we can describe in some sense the closeness 

of ξj to npj simultaneously for all j ∀ r. The main difficulty in this Thorem comes 
from the fact that random variables ξj for j ∀ r are not independent, for example, 
because the total number of balls is equal to n, 

ξ1 + . . . + ξr = n, 
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i.e. if we know these numbers in n − 1 boxes we will automatically know their number 
in the last box. 

Theorem. We have that the random variable 
r � (ξj − npj )

2 

≈ α2 

npj
r−1 

j=1 

converges in distribution to α2 
r−1 distribution with (r − 1) degrees of freedom.


Proof. Let us fix a box Bj . The random variables


I(X1 ⊆ Bj ), . . . , I(Xn ⊆ Bj ) 

that indicate whether each observation Xi is in the box Bj or not are i.i.d. with 
Bernoully distribution B(pj ) with probability of success 

� 
I(X1 ⊆ Bj ) = � (X1 ⊆ Bj ) = pj 

and variance 
Var(I(X1 ⊆ Bj )) = pj (1 − pj ). 

Therefore, by Central Limit Theorem we know that the random variable 

ξj − npj 
�n I(Xl ⊆ Bj ) − npjl=1 = 

npj (1 − pj ) npj (1 − pj ) 
�n � 

= l=1 I(Xl ⊆ Bj ) − n ≈ N (0, 1)∞
nVar 

converges to standard normal distribution. Therefore, the random variable 

ξj − npj �
1 − pj N (0, 1) = N (0, 1 − pj )∞

npj 
≈ 

converges to normal distribution with variance 1 − pj . Let us be a little informal and 
simply say that 

ξj − npj ≈ Zj∞
npj 

where random variable Zj ∩ N (0, 1 − pj ). 
We know that each Zj has distribution N (0, 1 − pj ) but, unfortunately, this does 

not tell us what the distribution of the sum 
� 

Zj 
2 will be, because as we mentioned 

above r.v.s ξj are not independent and their correlation structure will play an im­
portant role. To compute the covariance between Zi and Zj let us first compute the 
covariance between 

ξi − npi ξj − npj ∞
npi 

and ∞
npj 
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which is equal to 

� �� ξi − npj ξj − npj 
= 

n
∞

1 
pipj 

( 
� 

ξiξj − ξinpj − ξj npi + n 2 pipj )∞
npi 

∞
npj 

1 � 1 � 
= 

n
∞

pipj 
( ξiξj − npinpj − npj npi + n 2 pipj ) = 

n
∞

pipj 
( ξiξj − n 2 pipj ). 

� 
To compute ξiξj we will use the fact that one ball cannot be inside two different 
boxes simultaneously which means that 

I(Xl ⊆ Bi)I(Xl ⊆ Bj ) = 0. (23.1) 

Therefore, 

n n 
� � 

�� �� � � 
� � 

ξiξj = I(Xl ⊆ Bi) I(Xl� ⊆ Bj ) = I(Xl ⊆ Bi)I(Xl� ⊆ Bj ) 
l=1 l� =1 l,l� 

� � � � 
= I(Xl ⊆ Bi)I(Xl� ⊆ Bj )+ I(Xl ⊆ Bi)I(Xl� ⊆ Bj ) 

l=l� l=l�√
� ⎛� � 

this equals to 0 by (23.1) 
� � 

= n(n − 1) I(Xl ⊆ Bj ) I(Xl� ⊆ Bj ) = n(n − 1)pipj . 

Therefore, the covariance above is equal to 

n
∞

1 
pipj 

� 
n(n − 1)pipj − n 2 pipj = −∞

pipj . 

To summarize, we showed that the random variable 

r r � (ξj − npj )
2 � 

npj 
≈ Zj 

2 . 
j=1 j=1 

where random variables Z1, . . . , Zn satisfy 

� � 
Z2 = 1 − pi and covariance ZiZj = −∞

pipj .i 

To prove the Theorem it remains to show that this covariance structure of the sequence 
of Zi’s will imply that their sum of squares has distribution α2 

r−1. To show this we 
will find a different representation for 

� 
Zi 

2 . 
r be i.i.d. standard normal sequence. Consider two vectors Let g1, · · · , g


θg = (g1, . . . , gr) and θ
p = (
∞

p1, . . . ,
∞

pr) 
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and consider a vector θg− (θ p)θ θ = g1
∞

p1 + . . .+ gr 
∞

pr is a scalar product θ p, where θ pg · g · 
of θg and θp. We will first prove that 

θg − (θ p)θθ p has the same joint distribution as (Z1, . . . , Zr). (23.2)g · 

p)θTo show this let us consider two coordinates of the vector θg − (θ θ p :g · 
r r 

ith : gi − 
� 

gl
∞

pl
∞

pi and jth : gj − 
� 

gl
∞

pl
∞

pj 

l=1 l=1 

and compute their covariance: 

r r 

g
� 

� � 
gl
∞

pl
∞

pi 

�� � 
gl
∞

pl
∞

pj 

�

i − gj −


l=1 l=1

n
� 

= −∞
pi
∞

pj −
∞

pj 
∞

pi + pl
∞

pi
∞

pj = −2
∞

pipj + 
∞

pipj = −∞
pipj . 

l=1 

Similarly, it is easy to compute that 

r 
� 

� � 
gi − gl

∞
pl
∞

pi 

�2 
= 1 − pi. 

l=1 

This proves (23.2), which provides us with another way to formulate the convergence, 
namely, we have 

r r �� ξj − npj 
�2 � 

(ith ∞
npj 

≈ coordinate)2 

j=1 i=1 

where we consider the coorinates of the vector θg− (θ p)θθ p. But this vector has a simple g · 
geometric interpretation. Since vector θp is a unit vector: 

r r �
2 

� 
p|θ| = 

l=1 

(
∞

pi)
2 = pi = 1, 

l=1 

vector θ p · p and, therefore, V1 = (θ θg)pθ is the projection of vector θg on the line along θ
vector θ p · g)θ p, asV2 = θg − (θ θ p will be the projection of θg onto the plane orthogonal to θ
shown in figures 23.2 and 23.3. 

Let us consider a new orthonormal coordinate system with the last basis vector 
(last axis) equal to θp. In this new coordinate system vector θg will have coordinates 

θg∈ = (g1
∈ , . . . , gr

∈ ) = θgV 
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θ g 

p 
V1 V2 

Figure 23.2: Projections of θg.


p 

g2’ 

g1’ 

gr’ 

V2 

(*)’ 

(*) 

g 

Rotation 

gr 

g2 

g1 

90o 

Figure 23.3: Rotation of the coordinate system. 

obtained from θg by orthogonal transformation V that maps canonical basis into this 
new basis. But we proved a few lectures ago that in that case g1

∈ , . . . , g∈ will also be r 

i.i.d. standard normal. From figure 23.3 it is obvious that vector θV2 = θg − (θ θg)pθ inp ·
the new coordinate system has coordinates 

(g1
∈ , . . . , gr

∈
−1, 0) 

and, therefore, 
r � 

(ith coordinate)2 = (g1
∈ )2 + . . . + (gr

∈
−1)

2 . 
i=1 

But this last sum, by definition, has α2 
r−1 distribution since g∈

r
∈
−1 are i.i.d.1, · · · , g

standard normal. This finishes the proof of Theorem. 
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24.1 Goodness-of-fit test. 

Suppose that we observe an i.i.d. sample X1, . . . , Xn of random variables that can 
take a finite number of values B1, . . . , Br with some unknown to us probabilities 
p1, . . . , pr . Suppose that we have a theory (or a guess) that these probabilities are 
equal to some particular p∞

1, . . . , p
∞ and we want to test it. This means that we want r 

to test the hypotheses 

H1 : pi = p∞ for all i = 1, . . . , r, 
H

i 

2 : otherwise, i.e. for some i, pi = p∞i .⇒ 
If the first hypothesis is true than the main result from previous lecture tells us that 
we have the following convergence in distribution: 

r � (ξi − np∞i )
2 

≈ α2T = r−1 np∞
i=1 i 

p
where ξi = #{Xj : Xj = Bi}. On the other hand, if H2 holds then for some index i, 

i = p∞ and the statistics T will behave very differently. If pi is the true probability ⇒ i 

� (X1 = Bi) then by CLT (see previous lecture) 

ξi − npi ≈ N(0, 1 − pi).∞
npi 

If we write 

ξi − np∞ ξi − npi + n(pi − pi
∞) ξi − npi pi − pi

∞
i∞

np∞
= ∞

np∞
= ∞

npi 
+ 
∞

n ∞
p∞ii i 

then the first term converges to N(0, 1 − pi) but the second term converges to plus 
or minus ≤ since pi = pi

∞. Therefore,⇒ 
(ξi − np∞i )

2 

np∞
≈ +≤

i 
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which, obviously, implies that T ≈ +≤. Therefore, as sample size n increases the 
distribution of T under hypothesis H1 will approach α2 

r−1 distribution and under 
hypothesis H2 it will shift to +≤, as shown in figure 24.1. 

ψ 2 
r−1 

C 

H2 
H1 

Figure 24.1: Distribution of T under H1 and H2. 

Therefore, the following test looks very natural 

H1 : T ∀ c 
β = 

H2 : T > c, 

i.e. we suspect that the first hypothesis H1 fails if T becomes unusually large. We 
can decide what is ”unusually large” or how to choose the threshold c by fixing the 
error of type 1 to be equal to the level of significance ϕ : 

⇒ r−1(c,≤)ϕ = � 1(β = H1) = � 1(T > c) ∅ α2 

since under the first hypothesis the distribution of T can be approximated by α2 

distribution. Therefore, we find c from the table of α2 
r−1 

α
r−1 distribution such that ϕ = 

2 
r−1(c,≤). This test is called the α2 goodness-of-fit test. 

Example. Suppose that we have a sample of 189 observations that can take three 
values A, B and C with some unknown probabilities p1, p2 and p3 and the counts are 
given by 

A B C Total 
58 64 67 189 

p
We want to test the hypothesis H1 that this distribution is uniform, i.e. p1 = p2 = 

3 = 1/3. Suppose that level of significance is chosen to be ϕ = 0.05. Then the 
threshold c in the α2 test 

H1 : T ∀ c 
β = 

H2 : T > c 

can be found from the condition that 

α2 
3−1=2(c,≤) = 0.05 
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and from the table of α2 
2 distribution with two degrees of freedom we find that c = 5.9. 

In our case 

(58 − 189/3)2 (64 − 189/3)2 (67 − 189/3)2 

T = + + = 0.666 < 5.9 
189/3 189/3 189/3 

which means that we accept H1 at the level of significance 0.05. 

24.2 Goodness-of-fit for continuous distribution. 

A similar approach can be used to test a hypothesis that the distribution of the data is 
equal to some particular distribution, in the case when observations do not necessarily 
take a finite number of fixed values as was the case in the last section. Let X1, . . . , Xn 

be the sample from unknown distribution � and consider the following hypotheses: 

H1 : � = � 0 

H2 : � = � 0⇒ 

for some particular � 0. To use the result from previous lecture we will discretize the 
set of possible values of Xs by splitting it into a finite number of intervals I1, . . . , Ir 

as shown in figure 24.2. If the first hypothesis H1 holds then the probability that X 
comes from the jth interval is equal to 

� (X ⊆ Ij ) = � 0(X ⊆ Ij ) = pj
∞. 

and instead of testing H1 vs. H2 we will consider the following weaker hypotheses 

H1
∈ : � (X ⊆ Ij ) = p∞ for all j ∀ rj 

H2
∈ : otherwise 

Asking whether H ∈ holds is, of course, a weaker question that asking if H1 holds,1 

because H1 implies H ∈ but not the other way around. There are many distributions 1 

α

different from � that have the same probabilities of the intervals I1, . . . , Ir as � . 
Later on in the course we will look at other way to test the hypothesis H1 in a more 
consistent way (Kolmogorov-Smirnov test) but for now we will use the α2 convergence 
result from previous lecture and test the derivative hypothesis H1

∈ . Of course, we are 
back to the case of categorical data from previous section and we can simply use the 

2 goodness-of-fit test above. 
The rule of thumb about how to split into subintervals I1, . . . , Ir is to have the 

expected count in each subinterval 

np∞ = n � 0(X ⊆ Ii) → 5i 
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R 

IrI3I2I1 

0
P 

p1o p2o p3
o pro 

Figure 24.2: Discretizing continuous distribution. 

at least 5. For example, we can split into intervals of equal probabilities p∞ = 1/r andi 

choose their number r so that 
n 

np∞ = 5.i r 
→ 

Example. (textbook, p. 539) We want to test the following hypotheses: 

H
H1 : � = N (3.912, 0.25) 

2 : otherwise 

4321 

0.25 0.250.250.25 

I1 I4I2 I3 

R 

3.912 

Figure 24.3: Total of 4 Sub-intervals. 

We are given n = 23 observations and using the rule of thumb we will split into r 
equal probability intervals so that 

n 23 
= 

r 
→ 5 ≥ r = 4. 

r 
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Therefore, we split into 4 intervals of probability 0.25 each. It is easy to find the 
endpoints of these intervals for the distribution N (3.912, 0.25) which we will skip and 
simply say that the counts of the observations in these intervals are... 
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25.1 Goodness-of-fit for composite hypotheses. 

(Textbook, Section 9.2) 
Suppose that we have a sample of random variables X1, . . . , Xn that can take a 

finite number of values B1, . . . , Br with unknown probabilities 

p1 = � (X = B1), . . . , pr = � (X = Br ) 

and suppose that we want to test the hypothesis that this distribution comes from a 
parameteric family { � ν : χ ⊆ �}. In other words, if we denote pj (χ) = � ν (X = Bj ), 
we want to test: 

H
H1 : pj = pj (χ) for all j ∀ r for some χ ⊆ � 

2 : otherwise. 

If we wanted to test H1 for one particular fixed χ we could use the statistic 

r � (ξj − npj (χ))
2 

T = , 
npj (χ)j=1 

and use a simple α2 test from last lecture. The situation now is more complicated 
because we want to test if pj = pj (χ), j ∀ r at least for some χ ⊆ � which means that 
we have many candidates for χ. One way to approach this problem is as follows. 

(Step 1) Assuming that hypothesis H1 holds, i.e. � = � ν for some χ ⊆ �, we can 
find an estimate χ� of this unknown χ and then 

(Step 2) try to test whether indeed the distribution � is equal to � ν� by using 
the statistics 

r � (ξj − npj (χ
�))2 

T = 
npj (χ�)j=1 

in α2 test. 
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This approach looks natural, the only question is what estimate χ� to use and how 
the fact that χ� also depends on the data will affect the convergence of T. It turns 
out that if we let χ� be the maximum likelihood estimate, i.e. χ that maximizes the 
likelihood function 

�(χ) = p1(χ)
ξ1 . . . pr (χ)

ξr 

then the statistic 
r � (ξj − npj (χ

�))2 

≈ α2T = 
npj (χ�) 

r−s−1 
j=1 

converges to α2 
r−s−1 distribution with r − s − 1 degrees of freedom, where s is the 

dimension of the parameter set �. Of course, here we assume that s ∀ r − 2 so that 
we have at least one degree of freedom. Very informally, by dimension we understand 
the number of free parameters that describe the set �, which we illustrate by the 
following examples. 

1. The family of Bernoulli distributions B(p) has only one free parameter p ⊆ [0, 1] 
so that the set � = [0, 1] has dimension s = 1. 

� 
2. The family of normal distributions N(µ, δ2) has two free parameters µ ⊆ and� 

δ2 → 0 and the set � = × [0,≤) has dimension s = 2. 

3. Let us consider a family of all distributions on the set {0, 1, 2}. The distribution 

� (X = 0) = p1, � (X = 1) = p2, � (X = 2) = p3 

p

is described by parameters p1, p2 and p3. But since they are supposed to add 
up to 1, p1 + p2 + p3 = 1, one of these parameters is not free, for example, 

3 = 1 − p1 − p2. The remaining two parameters belong to a set 

p1 ⊆ [0, 1], p2 ⊆ [0, 1 − p1] 

shown in figure 25.1, since their sum should not exceed 1 and the dimension of 
this set is s = 2. 

p2 

0 

s=2 

p1
1 

1 

Figure 25.1: Free parameters of a three point distribution.
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A
Example. (textbook, p.545) Suppose that a gene has two possible alleles A1 and 

2 and the combinations of theses alleles define there possible genotypes A1A1, A1A2 

and A2A2. We want to test a theory that 

Probability to pass A1 to a child = χ : 
Probability to pass A2 to a child = 1 − χ : 

and the probabilities of genotypes are given by 

p1(χ) = � (A1A1) = χ2


p2(χ) = � (A1A2) = 2χ(1 − χ) (25.1)


p3(χ) = � (A2A2) = (1 − χ)2


Suppose that given the sample X1, . . . , Xn of the population the counts of each geno­
type are ξ1, ξ2 and ξ3. To test the theory we want to test the hypotheses 

H1 : p1 = p1(χ), p2 = p2(χ), p3 = p3(χ) for some χ ⊆ [0, 1] 
H2 : otherwise. 

First of all, the dimension of the parameter set is s = 1 since the family of distributions 
in (25.1) are described by one parameter χ. To find the MLE χ� we have to maximize 
the likelihood function 

p1(χ)
ξ1 p2(χ)

ξ2 p3(χ)
ξ3 

or, equivalently, maximize the log-likelihood 

log p1(χ)
ξ1 p2(χ)

ξ2 p3(χ)
ξ3	 = ξ1 log p1(χ) + ξ2 log p2(χ) + ξ3 log p3(χ) 

= ξ1 log χ2 + ξ2 log 2χ(1 − χ) + ξ3 log(1 − χ)2 . 

To find the critical point we take the derivative, set it equal to 0 and solve for χ which 
gives (we omit these simple steps): 

2ξ1 + ξ2
χ� = . 

2n 

Therefore, under the null hypothesis H1 the statistic 

(ξ1 − np1(χ
�))2 (ξ2 − np2(χ

�))2 (ξ3 − np3(χ
�))2 

T =	 + + 
np1(χ�) np2(χ�) np3(χ�) 

= α2 = α2 
1r−s−1 3−1−1≈ α2 

converges to α2 distribution with one degree of freedom. If we take the level of 1 

significance ϕ = 0.05 and find the threshold c so that 

0.05 = ϕ = α2 
1(T > c) ≥ c = 3.841 



� 

� 

� 

102 LECTURE 25. 

then we can use the following decision rule: 

H
H1 : T ∀ c = 3.841 

2 : T > c = 3.841 

General families. 
We could use a similar test when the distributions � ν , χ ⊆ � are not necessarily 

supported by a finite number of points B1, . . . , Br (for example, continuous distribu­
tions). In this case if we want to test the hypotheses 

H1 : � = � ν for some χ ⊆ � 
H2 : otherwise 

we can discretize them as we did in the last lecture (see figure 25.2), i.e. consider a 
family of distributions 

pj (χ) = � ν(X ⊆ Ij ) for j ∀ r, 

and instead consider derivative hypotheses 

H
H1 : pj = pj (χ) for some χ, j = 1, · · · , r 

2 : otherwise. 

I1 I2 Ir 

Pθ 

Figure 25.2: Goodness-of-fit for Composite Hypotheses. 



Lecture 26


26.1 Test of independence. 

In this lecture we will consider the situation when data comes from the sample space 
X that consists of pairs of two features and each feature has a finite number of 
categories or, simply, 

{(i, j) : i = 1, . . . , a, j = 1, . . . , b}.X = 

If we have an i.i.d. sample X1, . . . , Xn with some distribution � on X then each Xi 

is a pair (Xi 
1, Xi 

2) where X1 can take a different values and X2 can take b different i i 

values. Let Nij be a count of all observations equal to (i, j), i.e. with first feature 
equal to i and second feature equal to j, as shown in table below. 

Table 26.1: Contingency table. 

Feature 1 
1 
2 
. . . 
a 

Feature 2 
1 2 b· · · 

N11 N12 N1b· · · 
N21 N22 N2b· · · 
. . . . . . . . . . . . 

Na1 Na2 Nab· · · 

We would like to test the independence of two features which means that 

� (X = (i, j)) = � (X1 = i) � (X2 = j). 

In we introduce the notations 

� (X = (i, j)) = χij , � (X1 = i) = pi and � (X2 = j) = qj , 
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then we want to test that for all i and j we have χij = piqj . Therefore, our hypotheses 
can be formulated as follows: 

H
H1 : χij = piqj for some (p1, . . . , pa) and (q1, . . . , qb) 

2 : otherwise 

Of course, these hypotheses fall into the case of composite α2 goodness-of-fit test from 
previous lecture because our random variables take 

r = a × b 

possible values (all pairs of features) and we want to test that their distribution comes 
from the family of distributions with independent features described by the hypothesis 
H1. Since pis and qj s should add up to one 

p1 + . . . + pa = 1 and q1 + . . . + qb = 1 

one parameter in each sequence, for example pa and qb, can be computed in terms of 
other probabilities and we can take (p1, . . . , pa−1) and (q1, . . . , qb−1) as free parameters 
of the model. This means that the dimension of the parameter set is 

s = (a − 1) + (b − 1). 

Therefore, if we find the maximum likelihood estimates for the parameters of this 
model then the chi-squared statistic: 

� (Nij − np�i qj
�)2 

≈ α2T = = α2 = α2 
r−s−1 ab−(a−1)−(b−1)−1 (a−1)(b−1)np�i qj

�
i,j 

converges in distribution to α2
(a−1)(b−1) distribution with (a − 1)(b − 1) degrees of 

freedom. To formulate the test it remains to find the maximum likelihood estimates 
of the parameters. We need to maximize the likelihood function 

⎭ 
(piqj )

Nij 
⎭ P

j Nij 
⎭ P

i Nij = 
⎭ 

Ni+ 
⎭ 

N+j= p p qji qj i 
i,j i j i j 

where we introduced the notations 
� 

Ni+ = Nij 

j 

for the total number of observations in the ith row or, in other words, the number of 
observations with the first feature equal to i and 

� 
N+j = Nij 

i 



105 LECTURE 26. 

for the total number of observations in the jth column or, in other words, the number 
of observations with the second feature equal to j. Since pis and qj s are not related to 
each other it is obvious that maximizing the likelihood function above is equivalent 

Ni+ N+jto maximizing 
� 

i pi and 
� 

j qj separately. Let us not forget that we maximize 
given the constraints that pis and qj s add up to 1 (otherwise, we could let them be 
equal to +≤). Let us solve, for example, the following optimization problem: 

a � 
maximize 

⎭ 
p Ni+ given that pi = 1 i 

i i=1 

or taking the logarithm 

a � � 
maximize Ni+ log pi given that pi = 1. 

i=1 

We can use the method of Lagrange multipliers. If we consider the function 

a � � 
L = Ni+ log pi − ∂( pi − 1) 

i=1 

then we need to find the saddle point of L by maximizing it with respect to pis and 
minimizing it with respect to ∂. Taking the derivative with respect to pi we get 

�L Ni+ Ni+ 

�pi 
= 0 ≥ = ∂ ≥ pi = 

pi ∂ 

and taking the derivative with respect to ∂ we get 

a 
�L � 

= 0 ≥ pi = 1. 
�∂ 

i=1 

Combining these two conditions we get 

� � Ni+ n 
pi = 

∂ 
= 

∂ 
= 1 ≥ ∂ = n 

and, therefore, we get that the MLE for pi: 

Ni+ 
p� = .i n 

Similarly, the MLE for qj is: 

qj
� = 

N+j 
. 

n 
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Therefore, chi-square statistic T in this case can be written as 

� (Nij − Ni+N+j /n)2 

T = 
Ni+N+j /ni,j 

and the decision rule is given by 

β = 
H1 : T ∀ c 
H2 : T > c 

where the threshold is determined from the condition 

α2
(a−1)(b−1) (c, +≤) = ϕ. 

Example. In 1992 poll 189 Montana residents were asked were asked whether 
their personal financial status was worse, the same, or better than one year ago. The 
opinions were divided into three groups by the income rage: under 20K, between 20K 
and 35K, and over 35K. We would like to test if the opinion was independent of the 
income range at the level of significance ϕ = 0.05. 

Table 26.2: Montana outlook poll. 

a = 3 
∀ 20K 

(20K, 35K) 
35K→ 

b = 3 
Worse Same Better 

20 15 12 
24 27 32 
14 22 23 
58 64 67 

47 
83 
59 
189 

The chi-square statistic is


67×59 )2
(20 − 47×58 )2 (23 − 
189T = 189 + . . . + = 5.2147×58 67×59 

189 189 

α

and the threshold c:


2
(a−1)(b−1) (c, +≤) = α2


4(c, ≤) = ϕ = 0.05 ≥ c = 9.488. 

Since T = 5.21 < c = 9.488 we accept the hypotheses H1 that the opinion is inde­
pendent of the income range. 
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Lecture 27


27.1 Test of homogeneity. 

Suppose that the population is divided into R groups and each group (or the entire 
population) is divided into C categories. We would like to test whether the distribu­
tion of categories in each group is the same. 

Table 27.1: Test of homogeneity 

Group 1 
. . . 

Group R 

Category 1 · · · Category C 
N11 · · · N1C 
. . . . . . . . . 

NR1 · · · NRC 

N+1 · · · N+C 

N1+ 
. . . 

NR+ 

n 

If we denote 
� (Categoryj |Groupi) = pij 

so that for each group i ∀ R we have 

C � 
pij = 1 

j=1 

then we want to test the following hypotheses: 

H
H1 : pij = pj for all groups i ∀ R 

2 : otherwise 

If the observations X1, . . . , Xn are sampled independently from the entire popu­
lation then the homogeneity over groups is the same as independence of groups and 
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categories. Indeed, if have homogeneity 

� (Categoryj |Groupi) = � (Categoryj ) 

then we have 

� (Groupi, Categoryj ) = � (Categoryj |Groupi) � (Groupi) = � (Categoryj ) � (Groupi) 

which means the groups and categories are independent. Alternatively, if we have 
independence: 

� (Groupi, Categoryj )� (Categoryj |Groupi) = � (Groupi) 
� (Categoryj ) � (Groupi) 

= = � (Categoryj )� (Groupi) 

which is homogeneity. This means that to test homogeneity we can use the indepen­
dence test from previous lecture. 

Interestingly, the same test can be used in the case when the sampling is done 
not from the entire population but from each group separately which means that we 
decide apriori about the sample size in each group - N1+, . . . , NR+. When we sample 
from the entire population these numbers are random and by the LLN Ni+/n will 
approximate the probability � (Groupi), i.e. Ni+ reflects the proportion of group j in 
the population. When we pick these numbers apriori one can simply think that we 
artificially renormalize the proportion of each group in the population and test for 
homogeneity among groups as independence in this new artificial population. Another 
way to argue that the test will be the same is as follows. 

Assume that

� (Categoryj |Groupi) = pj


where the probabilities pj are all given. Then by Pearson’s theorem we have the 
convergence in distribution 

C � (Nij − Ni+pj )
2 

≈ α2 

Ni+pj
C−1 

j=1 

for each group i ∀ R which implies that 

N

R C � � (Nij − Ni+pj )
2 

≈ α2 

i+pj
R(C−1) 

i=1 j=1 
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N

since the samples in different groups are independent. If now we assume that prob­
abilities p1, . . . , pC are unknown and we use the maximum likelihood estimates p�

j = 
+j /n instead then 

R C �� (Nij − Ni+N+j /n)2 

≈ α2 = α2 

Ni+N+j /n R(C−1)−(C−1) (R−1)(C−1) 
i=1 j=1 

because we have C − 1 free parameters p1, . . . , pC−1 and estimating each unknown 
parameter results in losing one degree of freedom. 
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Lecture 28


28.1 Kolmogorov-Smirnov test. 

Suppose that we have an i.i.d. sample X1, . . . , Xn with some unknown distribution � 
and we would like to test the hypothesis that � is equal to a particular distribution 

� 0, i.e. decide between the following hypoheses: 

H
H1 : � = � 0 

2 : otherwise 

We considered this problem before when we talked about goodness-of-fit test for 
continuous distribution but, in order to use Pearson’s theorem and chi-square test, 
we discretized the distribution and considered a weaker derivative hypothesis. We 
will now consider a different test due to Kolmogorov and Smirnov that avoids this 
discretization and in a sense is more consistent. 

Let us denote by F (x) = � (X1 x) a cumulative distribution function and ∀
consider what is called an empirical distribution function: 

n
1 � 

Fn(x) = � n(X ∀ x) = I(Xi ∀ x) 
n 

i=1 

that is simply the proportion of the sample points below level x. For any fixed point � 
the law of large numbers gives that x ⊆ 

n
1 � � 

Fn(x) = I(Xi ∀ x) ≈ I(X1 ∀ x) = � (X1 ∀ x) = F (x), 
n 

i=1 

i.e. the proportion of the sample in the set (−≤, x] approximates the probability of 
this set. 

It is easy to show from here that this approximation holds uniformly over all� 
:x ⊆ 

sup Fn(x) − F (x) ≈ 0 
x≤ � 

| | 
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1 

0 

y 

x 

X 

Y 

F(X) = Y 

Figure 28.1: C.d.f. and empirical d.f. 

i.e. the largest difference between Fn and F goes to 0 in probability. The key 
observation in the Kolmogorov-Smirnov test is that the distribution of this supremum 
does not depend on the distribution � of the sample. 

Theorem 1. The distribution of supx≤ � Fn(x) − F (x) does not depend on F .| |
Proof. For simplicity, let us assume that F is continuous, i.e. the distribution is 

continuous. Let us define the inverse of F by 

F −1(y) = min{x : F (x) → y}. 

Then making the change of variables y = F (x) or x = F −1(y) we can write 

� (sup Fn(x) − F (x) ∀ t) = � ( sup Fn(F −1(y)) − y ∀ t). 
x≤ � 

| | 
0�y�1 

| | 

Using the definition of the empirical d.f. Fn we can write 

n n
1 1�
 �


Fn(F −1 I(Xi ∀ F −1(y)) = (y)) = I(F (Xi) ∀ y) 
nn 

i=1 i=1 

and, therefore, 

n 

∀ t
 .

1
�


� ( sup Fn(F −1(y)) − y ∀ t) = �| | I(F (Xi) ∀ y) − ysup 
n0�y�1 0�y�1 

i=1 

The distribution of F (Xi) is uniform on the interval [0, 1] because the c.d.f. of F (X1) 
is 

� (F (X1) ∀ t) = � (X1 ∀ F −1(t)) = F (F −1(t)) = t. 

Therefore, the random variables 

Ui = F (Xi) for i ∀ n 
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are independent and have uniform distribution on [0, 1] and, combining with the 
above, we proved that 

n 

I(Ui ∀ y) − y ∀ t

1
�


� (sup Fn(x) − F (x) ∀ t) = � 
� 
| | sup 

n0�y�1x≤
i=1 

which is clearly independent of F . 

Next, we will formulate the main result on which the KS test is based. First of 
all, let us note that for a fixed x the CLT implies that 

∞
n(Fn(x) − F (x)) ≈ N 0, F (x)(1 − F (x))


because F (x)(1 − F (x)) is the variance of I(X1 ∀ x). If turns out that if we consider 

Fn(x) − F (x)
∞

n sup 
x≤ � 

| | 

it will also converge to some distribution. 
Theorem 2. We have, 

∗ 

(
∞

nsupx≤
�


| |� Fn(x) − F (x) ∀ t) ≈ H(t) = 1 − 2 
i=1 

(−1)i−1 e−2i2 t� 

where H(t) is the c.d.f. of Kolmogorov-Smirnov distribution.

If we formulate our hypotheses in terms of cumulative distribution functions:


H
H1 : F = F0 for a givenF0 

2 : otherwise 

then based on Theorems 1 and 2 the Kolmogorov-Smirnov test is formulated as fol­

lows: 

H1 : Dn ∀ c 
> c 

β = 
H2 : Dn 

where 
Dn Fn(x) − F0(x)= 

∞
n sup 

x≤ � 
| | 

and the threshold c depends on the level of significance ϕ and can be found from the 
condition 

ϕ = � (β = H1 H1) = � (Dn c H1).⇒ | → |
In Theorem 1 we showed that the distribution of Dn does not depend on the unknown 
distribution F and, therefore, it can tabulated. However, the distribution of Dn 
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depends on n so one needs to use advanced tables that contain the table for the 
sample size n of interest. Another way to find c, especially when the sample size is 
large, is to use Theorem 2 which tells that the distribution of Dn can be approximated 
by the Kolmogorov-Smirnov distribution and, therefore, 

ϕ = � (Dn c H1) ∅ 1 − H(c).→ |

and we can use the table for H to find c. 
To explain why Kolmogorov-Smirnov test makes sense let us imagine that the first 

hypothesis fails and H2 holds which means that F = F0.⇒ 

Fn 

F (true) 

F0 (hypothesis) 

Figure 28.2: The case when F = F0.⇒

F
Since F is the true c.d.f. of the data, by law of large numbers the empirical d.f. 

n will converge to F as shown in figure 28.2 and as a result it will not approximate 
F0, i.e. for large n we will have 

sup Fn(x) − F0(x) > β 
x 

| |

for small enough β. Multiplying this by 
∞

n will give that 

Dn = 
∞

n sup Fn(x) − F0(x) > 
∞

nβ. 
x≤ � 

| |

H
If H1 fails then Dn > 

∞
nβ ≈ +≤ as n ≈ ≤. Therefore, it seems natural to reject 

1 when Dn becomes too large which is exactly what happens in KS test. 

Example. Let us consider a sample of size 10: 

0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64 

and let us test the hypothesis that the distribution of the sample is uniform on [0, 1]: 

H
H1 : F (x) = F0(x) = x 

2 : otherwise 
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x 

F(X) = x 

10 

2/n = 2/10 = 1/5 

10 

5 

0 

twice 

0.760.690.58 

0.53 

0.52 

0.43 

0.420.330.23 

Figure 28.3: Fn and F0 in the example. 

The figure 28.3 shows the c.d.f. F0 and empirical d.f. Fn(x). 
To compute Dn we notice that the largest difference between F0(x) and Fn(x) is 

achieved either before or after one of the jumps, i.e. 

0�x�1 
| | 

1�i�n |
Fn(Xi

−) − F (Xi) - before the ith jump 
sup Fn(x) − F (x) = max 

|
Fn(Xi) − F (Xi)

| 
- after the ith jump | 

Writing these differences for our data we get 

before the jump after the jump 
0 − 0.23 0.1 − 0.23| | | |
0.1 − 0.33 0.2 − 0.33| | | |
0.2 − 0.42 0.3 − 0.42| | | |
0.3 − 0.43 0.4 − 0.43| | | | 
· · · 

The largest value will be achieved at 0.9 − 0.64 = 0.26 and, therefore, | | 

0�x�1 
|Fn(x) − x = 

∞
10 × 0.26 = 0.82.Dn = 

∞
n sup | 

If we take the level of significance ϕ = 0.05 then 

1 − H(c) = 0.05 ≥ c = 1.35 
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and according to KS test 

H
β = 

H1 : Dn ∀ 1.35 
2 : Dn > 1.35 

we accept the null hypothesis H1 since Dn = 0.82 < c = 1.35. 



Lecture 29


Simple linear regression. 

29.1 Method of least squares. 

Suppose that we are given a sequence of observations 

(X1, Y1), . . . , (Xn, Yn) 

� 
where each observation is a pair of numbers X,Yi . Suppose that we want to ⊆
predict variable Y as a function of X because we believe that there is some underlying 
relationship between Y and X and, for example, Y can be approximated by a function 
of X, i.e. Y ∅ f(X). We will consider the simplest case when f(x) is a linear function 
of x: 

f(x) = λ0 + λ1x. 

Y 

x x 

x x 

x 

X 

Figure 29.1: The least-squares line. 

Of course, we want to find the line that fits our data best and one can define the 
measure of the quality of the fit in many different ways. The most common approach 
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is to measure how Yi is approximated by λ0 + λ1Xi in terms of the squared difference 
(Yi −(λ0 +λ1Xi))

2 which means that we measure the quality of approximation globally 
by the loss function 

n � 
L = ( Yi −(λ0 + λ1Xi))

2 minimize over λ0, λ1 
�⎛�� � ⎛� � 

≈ 
i=1 actual estimate 

and we want to minimize it over all choices of parameters λ0, λ1. The line that mini­
mizes this loss is called the least-squares line. To find the critical points we write: 

n 
�L � 

= 2(Yi − (λ0 + λ1Xi)) = 0 
�λ0 

− 
i=1 
n

�L � 
= 2(Yi − (λ0 + λ1Xi))Xi = 0 

�λ1 
− 

i=1 

If we introduce the notations 

¯ 1 � 
¯ 1 � 1 � 

X = Xi, Y = Yi, X2 = Xi 
2 , XY =

1 � 
XiYi 

n n n n 

then the critical point conditions can be rewritten as 

¯ ¯ ¯λ0 + λ1X = Y and λ0X + λ1X2 = XY 

and solving it for λ0 and λ1 we get 

¯ ¯
¯ ¯λ1 = 

XY − XY 
and λ0 = Y − λ1X. 

X2 ¯− X2 

If each Xi is a vector Xi = (Xi1, . . . , Xik) of dimension k then we can try to 
approximate Yis as a linear function of the coordinates of Xi : 

Yi ∅ f(Xi) = λ0 + λ1Xi1 + . . . + λk Xik . 

In this case one can also minimize the square loss: 
� 

L = (Yi − (λ0 + λ1Xi1 + . . . + λkXik ))
2 minimize over λ0, λ1, . . . , λk≈ 

by taking the derivatives and solving the system of linear equations to find the pa­
rameters λ0, . . . , λk. 
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29.2 Simple linear regression. 

First of all, when the response variable Y in a random couple (X, Y ) is predicted as 
a function of X then one can model this situation by 

Y = f(X) + π 

where the random variable π is independent of X (it is often called random noise)
� 

and on average it is equal to zero: π = 0. For a fixed X, the response variable Y in 
this model on average will be equal to f(X) since 

� � � � 
(Y X) = (f(X) + π X) = f(X) + (π X) = f(X) + π = f(X).| | |

� 
and f(x) = (Y X = x) is called the regression function. |

Next, we will consider a simple linear regression model in which the regression 
function is linear, i.e. f(x) = λ0 + λ1x, and the response variable Y is modeled as 

Y = f(X) + π = λ0 + λ1X + π, 

Y

where the random noise π is assumed to have normal distribution N(0, δ2). 
Suppose that we are given a sequence (X1, Y1), . . . , (Xn, Yn) that is described by 

the above model: 
i = λ0 + λ1Xi + πi 

and π1, . . . , πn are i.i.d. N(0, δ2). We have three unknown parameters - λ0, λ1 and δ2 

- and we want to estimate them using the given sample. Let us think of the points 
X1, . . . , Xn as fixed and non random and deal with the randomness that comes from 
the noise variables πi. For a fixed Xi, the distribution of Yi is equal to N(f(Xi), δ

2) 
with p.d.f. 

1 (y−f (Xi))
2 

f(y) = 2�2∞
2νδ

e− 

and the likelihood function of the sequence Y1, . . . , Yn is: 

� 
∞

2

1 

νδ 

�n 
e− 

2�2 

Pn
i=1(Yi −f (Xi ))

2 
� 1 �n 

f(Y1, . . . , Yn) = = i=1(Yi −λ0−λ1Xi)
2 
.∞

2νδ 
e− 

2�2 

Pn1 1 

Let us find the maximum likelihood estimates of λ0, λ1 and δ2 that maximize this 
likelihood function. First of all, it is obvious that for any δ2 we need to minimize 

n � 
(Yi − λ0 − λ1Xi)

2 

i=1 
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over λ0, λ1 which is the same as finding the least-squares line and, therefore, the MLE 
for λ0 and λ1 are given by 

¯ ¯
ˆ ¯ ¯ ˆλ0 = Y − λ̂1X and λ1 = 

XY − XY 
. 

X2 ¯− X2 

Finally, to find the MLE of δ2 we maximize the likelihood over δ2 and get: 
n 

δ2 1 � 
ˆ = (Yi − λ̂0 − λ̂1Xi)

2 . 
n 

i=1 

Let us now compute the joint distribution of λ̂0 and λ̂1. Since Xis are fixed, these 
estimates are written as linear combinations of Yis which have normal distributions 
and, as a result, λ̂0 and λ̂1 will have normal distributions. All we need to do is find 
their means, variances and covariance. First, if we write λ̂1 as 

¯ ¯ ¯
λ̂1 = 

XY − XY 1 
�

(Xi − X)Yi 
= ¯X2 ¯ n X̄2− X2 − X2 

then its expectation can be computed: 

¯ ¯� 
�

(Xi − X) 
� 

Yi 
�

(Xi − X)(λ0 + λ1Xi)
(λ̂1) = = 

¯ ¯n(X2 − X2) n(X2 −
¯
X2) 

nX2 ¯¯
= λ0 

(Xi − X) 
� 

Xi(Xi − X) − nX2 

= λ1 
n(X2 ¯

+λ1 
n(X2 ¯ n(X2 ¯

= λ1. 

� ⎛�
− X2) 

� 
− X2) − X2) 

=0 

Therefore, λ̂1 is unbiased estimator of λ1. The variance of λ̂1 can be computed: 

¯ ¯

Var( λ̂1) = Var 

��
(Xi − X)Yi 

� 
= Var


� � (Xi − X)Yi 
� 

n(X2 ¯ n(X2 ¯−
¯
X2) − X2) 

�2 
= 

n(X2 ¯
= n(X2 ¯X 1 

¯

�� Xi − 

X2) 
δ2 

n2(X2 − X2)2 
− X2)δ2 

− 
δ2


= .

n(X2 ¯
− X2)

� 

π2 
� 

Therefore, λ̂1 ∩ N λ1, n(X2 ¯ . A similar straightforward computations give: −X2) 

� X2 � �

ˆ ¯ ¯ δ2λ0 = Y − λ̂1X ∩ N λ0, 
� 1

+ 
¯

n n(X2 ¯− X2) 

and 
X̄δ2 

ˆCov( λ̂0, λ1) = − 
n(X2 

.
¯− X2) 
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30.1 Joint distribution of the estimates. 

In our last lecture we found the maximum likelihood estimates of the unknown pa­
rameters in simple linear regression model and we found the joint distribution of λ̂0 

and λ̂1. Our next goal is to describe the distribution of ˆ

δ

δ2 . We will show the following: 

2 is independent of λ0 and λ1.1. ˆ	 ˆ ˆ

δ2/δ2 has α22.	 nˆ n−2 distribution with n − 2 degrees of freedom.


Let us consider two vectors


1 1

a1 = (a11, . . . , a1n) = , . . . , ∞

n
∞

n 

and 
X̄Xi −

a2 = (a21, . . . , a2n) where a2i = . 
X̄2)n(X2 −


It is easy to check that both vectors have length 1 and they are orthogonal to each 
other since their scalar product is 

n	 n 
X̄1 Xi −�
 � 

= 0.a2 = a1ia2i =a1 ·	 ∞
n 

n(X2 ¯− X2)i=1 i=1 

Let us choose vectors a3, . . . , an so that a1, . . . , an is orthonormal basis and, as a 
result, the matrix ⎪ 

a11 · · · an1 

a12 · · · an2
⎬
⎬
⎬
�


�
�
�
⎝


A = . . . . . . . . . 
a1n · · · ann 
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is orthogonal. Let us consider vectors 

� � � 
Y = (Y1, . . . , Yn), µ = Y = ( Y1, . . . , Yn) 

and � � � Y1 − Y1 Yn − Yn
Y ∈ = (Y1

∈, . . . , Yn
∈) = 

Y − µ 
= , . . . , 

δ δ δ 
so that the random variables Y1

∈, . . . , Y are i.i.d. standard normal. We proved before n
∈

that if we consider an orthogonal transformation of i.i.d. standard normal sequence: 

Z ∈ = (Z1
∈ , . . . , Zn) = Y ∈A∈

then Z1
∈ , . . . , Z ∈ will also be i.i.d. standard normal. Since n 

� Y A − µA
Z ∈ = Y ∈A = 

� Y − µ
A = 

δ δ 

this implies that 
Y A = δZ ∈ + µA. 

Let us define a vector 

Z = (Z1, . . . , Zn) = Y A = δZ ∈ + µA. 

Each Zi is a linear combination of Yis and, therefore, it has a normal distribution. 
Since we made a specific choice of the first two columns of the matrix A we can write 
down explicitely the first two coordinates Z1 and Z2 of vector Z. We have, 

� 1 � 
¯ ¯Z1 = ai1Yi = ∞

n
Yi = 

∞
nY = 

∞
n(λ̂0 + λ̂1X) 

and the second coordinate 

¯� 
Z2 = ai2Yi = 

�

� 
(Xi − X)Yi


n(X2 ¯
− X2)


= n(X2 ¯
n(X2 ¯

= n(X2 ¯− X2) 
� (Xi − X)Yi − X2)λ̂1. − X2) 

Solving these two equations for λ̂0 and λ̂1 we can express them in terms of Z1 and Z2 

as 
¯1 X 

λ̂1 = � Z2 and λ̂0 = ∞1 
n

Z1 − � Z2. 
n(X2 ¯ n(X2 ¯− X2) − X2) 
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δNext we will show how ˆ2 can also be expressed in terms of Zis. 

n n � �2 
δ2 

� 
¯ ¯ ¯ ¯nˆ = (Yi − λ̂0 − λ̂1Xi)

2 = 
� 

(Yi − Y ) − λ̂1(Xi − X) {since λ̂0 = Y − λ̂1X}
i=1 i=1 

¯ ¯
= 

� 
λ2 

�
¯ ¯(Yi − Ȳ )2 − 2λ̂1n(X2 − X2)

(Yi − Y )(Xi − X) 
+ˆ

1 (Xi − X)2 

¯
� 

n(X2 − X2) 
�⎛� 

λ̂1 
� 

λ2 ¯ ¯ ¯= (Yi − Ȳ )2 − ˆ1 n(X2 − X2) = 
� 

Y 2 − n(Y )2 − λ̂1

2 
n(X2 

i 
� ⎛� � � ⎛� 

− X2

� 
) 

Z2
1 Z2

2 

n n � 
= + Z2 .= Yi 

2 − Z1
2 − Z2

2 
� 

Zi 
2 − Z1

2 − Z2
2 = Z3

2 + n· · ·
i=1 i=1 

In the last line we used the fact that Z = Y A is an orthogonal transformation of Y 
and since orthogonal transformation preserves the length of a vector we have, 

n n � 
Z2 

� 
= Yi 

2 .i 
i=1 i=1 

If we can show that Z1, . . . , Zn are i.i.d. with distribution N(0, δ2) then we will have 
shown that 

δ2 � Z3 
�2nˆ � Zn 

�2 
= + . . . + ∩ α2 

δ2 δ δ n−2 

has α2 distribution with n − 2 degrees of freedom, because Zi/δ ∩ N(0, 1). Since we 
showed above that 

Z = µA + δZ ∈ ≥ Zi = (µA)i + δZi
∈, 

the fact that Z1
∈ , . . . , Z ∈ are i.i.d. standard normal implies that Zis are independent n � 

of each other and Zi ∩ N((µA)i, δ). Let us compute the mean Zi = (µA)i: 

n n n 
� � � � � � 

(µA)i = Zi = ajiYj = aji Yj = aji(λ0 + λ1Xj) 
j=1 j=1 j=1 

n � 
¯ ¯= aji(λ0 + λ1X + λ1(Xj − X)) 

j=1 

n n 

¯
� � 

¯= (λ0 + λ1X) aji + λ1 aji(Xj − X). 
j=1 j=1 

a
Since the matrix A is orthogonal its columns are orthogonal to each other. Let 

i = (a1i, . . . , ani) be the vector in the ith column and let us consider i 3. Then the → 
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fact that ai is orthogonal to the first column gives 

n n � � 1 
ai · a1 = aj1aji = ∞

n
aji = 0 

j=1 j=1 

and the fact that ai is orthogonal to the second column gives 

n
1 � 

¯a2 = � (Xj − X)aji = 0.ai · 
¯n(X2 − X2) j=1 

This show that for i 3→ 

n n � � 
¯aji = 0 and aji(Xj − X) = 0 

j=1 j=1 

� 
and this proves that Zi = 0 for i 3 and Zi ∩ N(0, δ2) for i 3. As we mentioned →
above this also proves that nˆ n−2. 

δ

δ2/δ2

→
∩ α2 

2 is independent of λ̂0 and λ̂1 because as we showed above ˆFinally, ˆ δ2 can be 
written as a function of Z3, . . . , Zn and λ̂0 and λ̂1 can be written as functions of Z1 

and Z2. 



Lecture 31


31.1	 Statistical inference in simple linear regres­

sion. 

Let us first summarize what we proved in the last two lectures. We considered a 
simple linear regression model 

Y = λ0 + λ1X + π 

where π has distribution N(0, δ2) and given the sample (X1, Y1), . . . , (Xn, Yn) we found 
the maximum likelihood estimates of the parameters of the model and showed that 
their joint distribution is described by 

¯�	 δ2 � � � 1 X2 � � 
λ̂1 ∩ N λ1, − X2) 

, λ̂0 ∩ N λ0, +	 δ2

n(X2 ¯ n n(X2 ¯− X2) 

X̄δ2 
ˆCov( λ̂0, λ1) = − 

n(X2 ¯− X2) 

and δ̂2 is independent of λ̂0 and λ̂1 and 

δ2 

∩ α2nˆ

δ2 n−2. 

Suppose now that we want to find the confidence intervals for unknown parameters 
of the model λ0, λ1 and δ2 . This is straightforward and very similar to the confidence 
intervals for parameters of normal distribution. 

δ2/δ2 ∩ α2For example, using that nˆ n−2, if we find the constants c1 and c2 such 
that 

ϕ	 ϕ 
α2 

n−2(0, c1) = and α2 
n−2(c2, +≤) = 

2	 2 
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then with the remaining probability 1 − ϕ 

δ2 

c
nˆ

1 ∀ 
δ2 

∀ c2. 

Solving this for δ2 we find the 1 − ϕ confidence interval: 

δ2 nˆnˆ δ2 

c
∀ δ2 . 

2 
∀ 

c1 

Next, we find the 1 − ϕ confidence interval for λ1. We will use that 

�
δ2 

0 = � 
λ̂1 − λ1 ∩ N(0, 1) and = �1

2 + . . . + �2nˆ

π2 δ2 n−2 

n(X2 ¯
−X2 )


where �0, . . . , �n−2 are i.i.d. standard normal. Therefore, 

δ21 nˆ �0 
= 

1
� 

λ̂1 − 
π2 

λ1 
�

� 

n − 2 δ2 
� 

n−2 (�1
2 + . . . + �2 

∩ tn−2 

n(X2 ¯−X2 ) n−2) 

has Student distribution with n − 2 degrees of freedom and, simplifying, we get 

¯(n − 2)(X2 − X2) ∩ tn−2.(λ̂1 − λ1) 
δ̂2 

1 − α 

−C C 

PDF 

2 
α 

2 
α 

t

Figure 31.1: Confidence Interval. 

Therefore, if we find c such that 

n−2(−c, c) = 1 − ϕ 
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as shown in figure 31.1 then with probability 1 − ϕ: 

¯(n − 2)(X2 − X2) ∀ c−c ∀ (λ̂1 − λ1) 
δ2ˆ

and solving for λ1 gives the 1 − ϕ confidence interval: 

λ
δ2 δ2 

1 + c .λ̂1 − c 
(n − 2)(X2 X2) 

∀ λ1 ∀ ˆ
(n − 2)(

ˆ

X2 ¯
ˆ

− ¯ − X2) 

Similarly, to find the confidence interval for λ0 we use that 

λ̂0 − λ0 

� 
δ2 

n − 2 δ2 
∩ tn−2 

� 1 nˆ

1 + X2 

¯ δ2 
n n(X2 −X2) 

and 1 − ϕ confidence interval for λ0 is: 

¯ ¯δ2 � X2 � δ2 � X2 �ˆ
λ̂0 − c 1 + λ0 + c 1 + . 

X2 ¯ X2 ¯n − 2 − X2 
∀ λ0 ∀ ˆ

n 
ˆ

− 2 − X2 

Prediction Interval. 
Suppose now that we have a new observation X for which Y is unknown and we 

want to predict Y or find the confidence interval for Y. According to simple regression 
model, 

Y = λ0 + λ1X + π 

and it is natural to take Ŷ = λ̂0 + λ̂1X as the prediction of Y . Let us find the distri­
bution of their difference Ŷ − Y. Clearly, the difference will have normal distribution 
so we only need to compute the mean and the variance. The mean is 

�ˆ� 
(Ŷ − Y ) = 

� 
λ0 + 

� 
λ̂1X − λ0 − λ1X − π = λ0 + λ1X − λ0 − λ1X − 0 = 0. 

Since a new pair (X, Y ) is independent of the prior data we have that Y is independent 
of Ŷ . Therefore, since the variance of the sum or difference of independent random 
variables is equal to the sum of their variances, we get 

Var( Ŷ − Y ) = Var( Ŷ ) + Var(Y ) = δ2 + Var( Ŷ ), 

where we also used that Var(Y ) = Var(π) = δ2 . Let us compute the variance of Ŷ : 

� 
Var( Ŷ ) = 

� 
(λ̂0 + λ̂1X − λ0 − λ1X)2 = ((λ̂0 − λ0) + ( λ̂1 − λ1)X)2 
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� 
(λ̂0 − λ0)

2 +X2 � 
= (λ̂1 − λ1)

2 +2 
� 

(λ̂0 − λ0)(λ̂1 − λ1) X 
� ⎛� � � ⎛� � � ⎛� � 
variance of λ̂1 variance of λ̂0 covariance 

¯ ¯� 1 X2 � δ2 Xδ2 

= + δ2 + X2 

¯n n(X2 ¯ ¯ X2)− X2) n(X2 − X2) 
− 2X

n(X2 −
¯

= δ2
� 1

+ 
(X − X)2 � 

. 
n n(X2 ¯− X2) 

Therefore, we showed that 

¯� � 1 (X − X)2 �� 
Ŷ − Y ∩ N 0, δ2 1 + + 

n(X2 
.

¯− X2) 

As a result, we have: 

n 

δ2� 1 nˆ

δ2 1 + 

Ŷ

1 

− 

+ 

Y 

(X −X
¯
)2 

�

� 

n − 2 δ2 
∩ tn−2


n n(X2 −X2 ) 

and the 1 − ϕ prediction interval for Y is 

¯ ¯
Ŷ − c

δ2 � (X − X)2 � 
∀ Y ∀ ˆ

δ2 � (X − X)2 � 
n + 1 + Y + c n + 1 + . 

X2 ¯ n − 2 X2 ¯n − 2 − X2 − X2 
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32.1 Classification problem. 

Suppose that we have the data (X1, Y1), . . . , (Xn, Yn) that consist of pairs (Xi, Yi) 
such that Xi belongs to some set X and Yi belongs to a set Y = {+1,−1}. We will 
think of Yi as a label of Xi so that all points in the set X are divided into two classes 
corresponding to labels ±1. For example, Xis can be images or representations of 
images and Yis classify whether the image contains a human face or not. Given this 
data we would like to find a classifier 

f : X ≈ Y 

which given a point X ⊆ X would predict its label Y. This type of problem is called 
classification problem. In general, there may be more than two classes of points which 
means that the set of labels may consist of more than two points but, for simplicity, 
we will consider the simplest case when we have only two labels ±1. 

We will take a look at one approach to this problem called boosting and, in 
particular, prove one interesting property of the algorithm called AdaBoost. 

Let us assume that we have a family of classifiers 

.H = {h : X ≈ Y}

Suppose that we can find many classifiers in H that can predict labels Yi better than 
”tossing a coin” which means that they predict the correct label at least half of the 
time. We will call H a family of weak classifiers because we do not require much of 
them, for example, all these classifiers can make mistakes on, let’s say, 30% or even 
45% of the sample. 

The idea of boosting consists in trying to combine these weak classifiers so that 
the combined classifier predicts the label correctly most of the time. Let us consider 
one particular algorithm called Adaboost. 
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Given weights w(1), . . . , w(n) that add up to one we define the weighted classifi­
cation error of the classifier h by 

w(1)I(h(X1) = Y1) + . . . + w(n)I(h(Xn) = Yn).⇒ ⇒ 

AdaBoost algorithm. We start by assigning equal weights to the data points: 

1 
w1(1) = . . . = w1(n) = . 

n 

Then for t = 1, . . . , T we repeat the following cycle: 

π

1. Find ht ⊆ H such that weighted error


t = wt(1)I(ht(X1) = Y1) + . . . + wt(n)I(ht(Xn) = Yn)
⇒ ⇒ 

is as small as possible. 

12. Let ϕt = 
2 log 1−βt and update the weights: 

βt 

Z
w

e−ϕt Yiht(Xi ) 

t+1(i) = wt(i) , 
t 

where 
n � 

te
−ϕt Yiht(Xi)Zt = w

i=1 

is the normalizing factor to ensure that updated weights add up to one. 

After we repeat this cycle T times we output the function 

f(X) = ϕ1h1(X) + . . . + ϕT hT (X) 

and use sign(f(X)) as the prediction of label Y . 
First of all, we can assume that the weighted error πt at each step t is less than 0.5 

since, otherwise, if we make a mistake more than half of the time we should simply 
predict the opposite label. For πt ∀ 0.5 we have, 

1 
ϕt = log 

1 − εt 
0. 

2 εt 
→

Also, we have 
+1 if ht(Xi) = YiYiht(Xi) = 

if ht(Xi) = Yi.−1 ⇒ 



130 LECTURE 32. 

Therefore, if ht makes a mistake on the example (Xi, Yi) which means that ht(Xi) = Yi⇒
or, equivalently, Yiht(Xi) = −1 then 

e−ϕtYiht(Xi ) ϕt 

w
e

t+1(i) = wt(i) = wt(i). 
Zt Zt 

On the other hand, if ht predicts the label Yi correctly then Yiht(Xi) = 1 and 

Z
w

e−ϕt Yiht(Xi ) e−ϕt 

t+1(i) = wt(i) = wt(i). 
t Zt 

Since ϕt → 0 this means that we increase the relative weight of the ith example if we 
made a mistake on this example and decrease the relative weight if we predicted the 
label Yi correctly. Therefore, when we try to minimize the weighted error at the next 
step t + 1 we will pay more attention to the examples misclassified at the previous 
step. 

Theorem: The proportion of mistakes made on the data by the output classifier 
sign(f(X)) is bounded by 

n T
1 � ⎭ �

I(sign(f(Xi))) = Yi) ∀ 4πt(1 − πt). 
n 

⇒ 
i=1 t=1 

Remark: If the weighted errors πt will be strictly less than 0.5 at each step meaning 
that we predict the labels better than tossing a coin then the error of the combined 
classifer will decrease exponentially fast with the number of rounds T . For example, 
if πt ∀ 0.4 then 4εt(1 − εt) ∀ 4(0.4)(0.6) = 0.96 and the error will decrease as fast as 
0.96T . 

Proof. Using that I(x ∀ 0) ∀ e−x as shown in figure 32.1 we can bound the 
indicator of making an error by 

I(sign(f(Xi)) = Yi) = I(Yif(Xi) ∀ 0) ∀ e−Yi f (Xi ) = e−Yi 
PT 

t=1 ϕtht(Xi). (32.1)⇒ 

Next, using the step 2 of AdaBoost algorithm which describes how the weights 
are updated we can express the weights at each step in terms of the weights at the 
previous step and we can write the following equation: 

Z
w

wT (i)e
−ϕT Yi hT (Xi ) e−ϕT YihT (Xi ) wT −1(i)e

−ϕT −1 YihT −1 (Xi )


T +1(i) = =

T ZT ZT −1


= repeat this recursively over t 

e−ϕT Yi hT (Xi ) e−ϕT −1 YihT −1 (Xi ) e−ϕ1 Yih1(Xi ) e−Yi f (Xi ) 1 
= 

ZT −1 
. . . w1(i) = �T . 

nZT Z1 t=1 Zt 
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e −xI(X) 

Figure 32.1: Example. 

This implies that 

= w
T

1 
e−Yi f (Xi ) 

⎭ 
T +1(i) Zt. 

n 
t=1 

Combining this with (32.1) we can write 

n n T n T
1 � ⎭ 

I(sign(f (Xi) = Yi)) ∀ 
� 1 

e−Yi f (Xi ) = 
⎭ 

Zt 

� 
wT +1(i) = Zt. (32.2) 

n 
⇒ 

n 
i=1 i=1 t=1 i=1 t=1 

Next we will compute 
n � 

Zt = wt(i)e
−ϕt Yiht(Xi). 

i=1 

As we have already mentioned above, Yiht(Xi) is equal to −1 or +1 depending on 
whether ht makes a mistake or predicts the label Yi correctly. Therefore, we can 
write, 

n n n � 
Zt = 

� 
wt(i)e

−ϕt Yiht(Xi ) = 
� 

wt(i)I(Yi = ht(Xi))e
−ϕt + wt(i)I(Yi = ht(Xi))e ϕt ⇒ 

i=1 i=1 i=1

n n


ϕt 
�


= e−ϕt (1 − 
� 

wt(i)I(Yi = ht(Xi))) + e wt(i)I(Yi = ht(Xi))⇒
i=1 i=1 
� ⎛� � � ⎛� � 

βt βt 

= e−ϕt (1 − πt) + e ϕt πt. 

Up to this point all computations did not depend on the choice of ϕt but since we 
bounded the error by 

�T Zt we would like to make each Zt as small as possible and, t=1 
therefore, we choose ϕt that minimizes Zt. Simple calculus shows that we should take 

1ϕt = 
2 log 1−βt which is precisely the choice made in AdaBoost algorithm. For this 

βt 
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choice of ϕt we get 

εt 

ε
Zt = (1 − πt)

1 − εt 
+ πt 

1 − εt 
= 

�

4πt(1 − πt) 
t 

and plugging this into (32.2) finishes the proof of the bound. 


