
Lecture 13

13.1 Minimal jointly sufficient statistics.

When it comes to jointly sufficient statistics (T1, . . . , Tk) the total number of them
(k) is clearly very important and we would like it to be small. If we don’t care about
k then we can always find some trivial examples of jointly sufficient statistics. For
instance, the entire sample X1, . . . , Xn is, obviously, always sufficient, but this choice
is not interesting. Another trivial example is the order statistics Y1 ≤ Y2 ≤ . . . ≤ Yn

which are simply the values X1, . . . , Xn arranged in the increasing order, i.e.

Y1 = min(X1, . . . , Xn) ≤ . . . ≤ Yn = max(X1, . . . , Xn).

Y1, . . . , Yn are jointly sufficient by factorization criterion, since

f(X1, . . . , Xn|θ) = f(X1|θ) × . . . × f(Xn|θ) = f(Y1|θ) × . . . × f(Yn|θ).

When we face different choices of jointly sufficient statistics, how to decide which one
is better? The following definition seems natural.

Definition. (Minimal jointly sufficient statistics.) (T1, . . . , Tk) are minimal jointly
sufficient if given any other jointly sufficient statistics (r1, . . . , rm) we have,

T1 = g1(r1, . . . , rm), . . . , Tk = gk(r1, . . . , rm),

i.e. T s can be expressed as functions of rs.
How to decide whether (T1, . . . , Tk) is minimal? One possible way to do this is

through the Maximum Likelihood Estimator as follows.
Suppose that the parameter set Θ is a subset of

� k, i.e. for any θ ∈ Θ

θ = (θ1, . . . , θk) where θi ∈
�

.

Suppose that given the sample X1, . . . , Xn we can find the MLe of θ,

θ̂ = (θ̂1, . . . , θ̂k).
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The following simple fact will be useful.
Fact. Given any jointly sufficient statistics (r1, . . . , rm) the MLE θ̂ = (θ̂1, . . . , θ̂k)

is always a function of (r1, . . . , rm).
To see this we recall that θ̂ is the maximizer of the likelihood which by factorization

citerion can be represented as

f(x1, . . . , xn|θ) = u(x1, . . . , xn)v(r1, . . . , rm, θ).

But maximizing this over θ is equivalent to maximizing v(r1, . . . , rm, θ) over θ, and
the solution of this maximization problem depends only on (r1, . . . , rm), i.e. θ̂ =
θ̂(r1, . . . , rm).

This simple fact implies that if MLE θ̂ is jointly sufficient statistics then θ̂ is
minimal because θ̂ = θ̂(r1, . . . , rm) for any jointly sufficient (r1, . . . , rm).

Example. If the sample X1, . . . , Xn has uniform distribution U [a, b], we showed
before that

Y1 = min(X1, . . . , Xn) and Yn = max(X1, . . . , Xn)

are the MLE of unknown parameters (a, b) and (Y1, Yn) are jointly sufficient based on
factorization criterion. Therefore, (Y1, Yn) are minimal jointly sufficient.

Whenever we have minimal jointly sufficient statistics this yields one important
consequence for constructing an estimate of the unkown parameter θ. Namely, if we
measure the quality of an estimate via the average squared error loss function (as in
the previous section) then Rao-Blackwell theorem tells us that we can improve any
estimator by conditioning it on the sufficient statistics (this is also called projecting
onto sufficient statistics). This means that any ”good” estimate must depend on the
data only through this minimal sufficient statistics, otherwise, we can always improve
it. Let us give one example.

Example. If we consider a sample X1, . . . , Xn from uniform distribution U [0, θ]
then we showed before that

Yn = max(X1, . . . , Xn)

is the MLE of unknown parameter θ and also Yn is sufficient by factorization criterion.
Therefore, Yn is minimal jointly sufficient. Therefore, any ”good” estimate of θ should
depend on the sample only through their maximum Yn. If we recall the estimate of θ
by method of moments

θ̂ = 2X̄,

it is not a function of Yn and, therefore, it can be improved.
Question. What is the distribution of the maximum Yn?
End of material for Test 1. Problems on Test 1 will be similar to homework

problems and covers up to Pset 4.
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13.2 χ2 distribution.

(Textbook, Section 7.2)
Consider a standard normal random variable X ∼ N(0, 1). Let us compute the

distribution of X2. The cumulative distribution function (c.d.f.) of X2 is given by

� (X2 ≤ x) = � (−
√

x ≤ X ≤
√

x) =

∫ √
x

−√
x

1√
2π

e−
t2

2 dt.

The p.d.f. is equal to the derivative d
dx

� (X ≤ x) of c.d.f. and, hence, the density
of X2 is

fX2(x) =
d

dx

∫ √
x

−√
x

1√
2π

e−
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2 dt =
1√
2π
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x)2

2 (
√
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(−

√
x)2

2 (−
√
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x
1
2
−1e−
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2 .

The probability density of X2 looks like Gamma Distribution Γ( 1
2
, 1

2
). Recall that

gamma distribution Γ(α, β) with parameters (α, β) has p.d.f.

f(x|α, β) =
βα

Γ(α)
xα−1e−βx for x ≥ 0.

Consider independent random variables

X1 ∼ Γ(α1, β), . . . , Xn ∼ Γ(αn, β)

with gamma distributions that have the same parameter β, but α1, . . . , αn can be
different. Question: what is the distribution of X1 + . . . + Xn?

First of all, if X ∼ Γ(α, β) then the moment generating function of X can be
computed as follows:

�
etX =

∫ ∞

0

etx βα

Γ(α)
xα−1e−βxdx

=

∫ ∞

0

βα

Γ(α)
xα−1e−(β−t)xdx

=
βα

(β − t)α

∫ ∞

0

(β − t)α

Γ(α)
xα−1e−(β−t)xdx

︸ ︷︷ ︸

.

The function in the underbraced integral looks like a p.d.f. of gamma distribution
Γ(α, β − t) and, therefore, it integrates to 1. We get,

�
etX =

( β

β − t

)α

.
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Moment generating function of the sum
∑n

i=1 Xi is

�
et

Pn
i=1 Xi =

�
n∏

i=1

etXi =
n∏

i=1

�
etXi =

n∏

i=1

( β

β − t

)αi

=
( β

β − t

)P

αi

.

This means that:
n∑

i=1

Xi ∼ Γ
( n∑

i=1

αi, β
)

.

Given i.i.d. X1, · · · , Xn ∼ N(0, 1), the distribution of X2
1 + . . . + X2

n is Γ(n
2
, 1

2
) since

we showed above that X2
i ∼ Γ(1

2
, 1

2
).

Definition: χ2
n distribution with n degrees of freedom is the distribution of the

sum X2
1 + . . . + X2

n, where Xis are i.i.d. standard normal, which is also a gamma
distribution Γ(n

2
, 1

2
).


