
Lecture 14

14.1 Estimates of parameters of normal distribu-

tion.

Let us consider a sample
X1, . . . , Xn ∼ N(α, σ2)

from normal distribution with mean α and variance σ2. Using different methods (for
example, maximum likelihood) we showed that one can take X̄ as an estimate of
mean α and X̄2 − (X̄)2 as an estimate of variance σ2. The question is: how close
are these estimates to actual values of unknown parameters? By LLN we know that
these estimates converge to α and σ2,

X̄ → α, X̄2 − (X̄)2 → σ2, n → ∞,

but we will try to describe precisely how close X̄ and X̄2 − (X̄)2 are to α and σ2.
We will start by studying the following
Question: What is the joint distribution of (X̄, X̄2 − (X̄)2) when the sample

X1, . . . , Xn ∼ N(0, 1)

has standard normal distribution.
Orthogonal transformations.
The student well familiar with orthogonal transformations may skip to the be-

ginning of next lecture. Right now we will repeat some very basic discussion from
linear algebra and recall some properties and geometric meaning of orthogonal tran-
sormations. To make our discussion as easy as possible we will consider the case of
3-dimensional space

� 3.
Let us consider an orthonormal basis (~e1, ~e2, ~e3) as shown in figure 14.1, i.e. they

are orthogonal to each other and each has length one. Then any vector ~X can be
represented as

~X = X1~e1 + X2~e2 + X3~e3,
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Transformations

Rotate
Vectors

v1
v2v3

e1=(1, 0, 0)

e2=(0, 1, 0)

e3=(0, 0, 1)

X=(X1, X2, X3)

Figure 14.1: Unit Vectors Transformation.

where (X1, X2, X3) are the coordinates of vector ~X
Suppose now that we make a rotation (and, maybe, reflection) such that the

vectors (~e1, ~e2, ~e3) go to another orthonormal basis (~v1, ~v2, ~v3), i.e.

|~v1| = |~v2| = |~v3| = 1, ~v1 ⊥ ~v2 ⊥ ~v3 ⊥ ~v1.

Let us denote the coordinates of vector ~vi = (vi1, vi2, vi3) for i = 1, 2, 3. Then vector
~X is rotated to vector

~X = X1~e1 + X2~e2 + X3~e3 → X1~v1 + X2~v2 + X3~v3

= X1(v11, v12, v13) + X2(v21, v22, v23) + X3(v31, v32, v33)

= (X1, X2, X3)





v11 v12 v13

v21 v22 v23

v31 v32 v33



 = ~XV,

where V is the matrix with elements vij.
If we want to make inverse rotation so that vectors (~v1, ~v2, ~v3) rotate back to

(~e1, ~e2, ~e3), we need to multiply vector ~X by the transpose V T :

~X → ~XV T = (X1, X2, X3)





v11 v21 v31

v12 v22 v32

v13 v23 v33



 .

Let us check that transpose V T defines inverse rotation. For example, let us check
that vector ~v1 = (v11, v12, v13) goes to ~e1 = (1, 0, 0). We have,

~v1V
T =

(
v2
11 + v2

12 + v2
13, v11v21 + v12v22 + v13v23, v11v31 + v12v32 + v13v33

)
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=
(

(length of ~v1)
2, ~v1 · ~v2, ~v1 · ~v3

)
= (1, 0, 0)

since (~v1, ~v2, ~v3) is an orthonormal basis. Therefore, we have proven that ~v1 → ~e1.
Similarly, ~v2 → ~e2 and ~v3 → ~e3.

Note that this inverse rotation V T will send the basis (~e1, ~e2, ~e3) to

~v′
1 = (v11, v21, v31)

~v′
2 = (v12, v21, v32)

~v′
3 = (v13, v21, v33),

- the columns of matrix V, which is, therefore, again an orthonormal basis:

|~v′
1| = |~v′

2| = |~v′
3| = 1

~v′
1 ⊥ ~v′

2 ⊥ ~v′
3 ⊥ ~v′

1.

This means that both rows and columns of V forms an orthonormal basis.

e3=(0, 0, 1)

e2=(0, 1, 0)

e1=(1, 0, 0)

v3 v2
v1

V TV
T

v3’ v2’

v1’

Figure 14.2: Unit Vectors Fact.


