
Lecture 15

15.1 Orthogonal transformation of standard nor-

mal sample.

Consider X1, . . . , Xn ∼ N(0, 1) i.d.d. standard normal r.v. and let V be an orthogonal

transformation in
� n. Consider a vector ~Y = ~XV = (Y1, . . . , Yn). What is the joint

distribution of Y1, . . . , Yn? It is very easy to see that each Yi has standard normal
distribution and that they are uncorrelated. Let us check this. First of all, each

Yi =
n∑

k=1

vkiXk

is a sum of independent normal r.v. and, therefore, Yi has normal distribution with
mean 0 and variance

Var(Yi) =

n∑

k=1

v2
ik = 1,

since the matrix V is orthogonal and the length of each column vector is 1. So, each
r.v. Yi ∼ N(0, 1). Any two r.v. Yi and Yj in this sequence are uncorrelated since

�
YiYj =

n∑

k=1

vikvjk = ~v′
i~v

′
j = 0

since the columns ~v′
i ⊥ ~v′

j are orthogonal.
Does uncorrelated mean independent? In general no, but for normal it is true

which means that we want to show that Y ’s are i.i.d. standard normal, i.e. ~Y
has the same distribution as ~X. Let us show this more accurately. Given a vector
t = (t1, . . . , tn), the moment generating function of i.i.d. sequence X1, . . . , Xn can be
computed as follows:

ϕ(t) =
�

e
~XtT =

�
et1X1+...+tnXn =

n∏

i=1

�
etiXi
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=

n∏

i=1

e
t2i
2 = e

1
2

Pn
i=1 t2i = e

1
2
|t|2.

On the other hand, since ~Y = ~XV and

t1Y1 + . . . + tnYn = (Y1, . . . , Yn)






t1
...
tn




 = (Y1, . . . , Yn)t

T = ~XV tT ,

the moment generating function of Y1, . . . , Yn is:

�
et1Y1+···+tnYn =

�
e

~XV tT =
�

e
~X(tV T )T

.

But this is the moment generating function of vector ~X at the point tV T , i.e. it is
equal to

ϕ(tV T ) = e
1
2
|tV T |2 = e

1
2
|t|2 ,

since the orthogonal transformation preserves the length of a vector |tV T | = |t|. This

means that the moment generating function of ~Y is exactly the same as of ~X which
means that Y1, . . . , Yn have the same joint distribution as X’s, i.e. i.i.d. standard
normal.

Now we are ready to move to the main question we asked in the beginning of the
previous lecture: What is the joint distribution of X̄ (sample mean) and X̄2 − (X̄)2

(sample variance)?
Theorem. If X1, . . . , Xn are i.d.d. standard normal, then sample mean X̄ and

sample variance X̄2 − (X̄)2 are independent,

√
nX̄ ∼ N(0, 1) and n(X̄2 − (X̄)2) ∼ χ2

n−1,

i.e.
√

nX̄ has standard normal distribution and n(X̄2 − (X̄)2) has χ2
n−1 distribution

with (n − 1) degrees of freedom.

Proof. Consider a vector ~Y given by transformation

~Y = (Y1, . . . , Yn) = ~XV = (X1, . . . , Xn)






1√
n

· · · · · · · · ·
... · · · ? · · ·
1√
n

· · · · · · · · ·




 .

Here we chose a first column of the matrix V to be equal to

~v1 =
( 1√

n
, . . . ,

1√
n

)

.
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Figure 15.1: Unit Vectors.

We let the remaining columns be any vectors such that the matrix V defines orthog-
onal transformation. This can be done since the length of the first column vector
|~v1| = 1, and we can simply choose the columns ~v2, . . . , ~vn to be any orthogonal basis
in the hyperplane orthogonal to vector ~v1, as shown in figure 15.1.

Let us discuss some properties of this particular transformation. First of all, we
showed above that Y1, . . . , Yn are also i.i.d. standard normal. Because of the particular
choice of the first column ~v1 in V, the first r.v.

Y1 =
1√
n

X1 + . . . +
1√
n

Xn,

and, therefore,

X̄ =
1√
n

Y1. (15.1)

Next, n times sample variance can be written as

n(X̄2 − (X̄)2) = X2
1 + . . . + X2

n −
( 1√

n
(X1 + . . . + Xn)

)2

= X2
1 + . . . + X2

n − Y 2
1 .

But the orthogonal transformation V preserves the length

Y 2
1 + · · ·+ Y 2

n = X2
1 + · · · + X2

n

and, therefore, we get

n(X̄2 − (X̄)2) = Y 2
1 + . . . + Y 2

n − Y 2
1 = Y 2

2 + . . . + Y 2
n . (15.2)

Equations (15.1) and (15.2) show that sample mean and sample variance are inde-
pendent since Y1 and (Y2, . . . , Yn) are independent,

√
nX̄ = Y1 has standard normal

distribution and n(X̄2− (X̄)2) has χ2
n−1 distribution since Y2, . . . , Yn are independent
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standard normal.

Consider now the case when

X1, . . . , Xn ∼ N(α, σ2)

are i.i.d. normal random variables with mean α and variance σ2. In this case, we
know that

Z1 =
X1 − α

σ
, · · · , Zn =

Xn − α

σ
∼ N(0, 1)

are independent standard normal. Theorem applied to Z1, . . . , Zn gives that

√
nZ̄ =

√
n

1

n

n∑

i=1

Xi − α

σ
=

√
n(X̄ − α)

σ
∼ N(0, 1)

and

n(Z̄2 − (Z̄)2) = n
( 1

n

∑(Xi − α

σ

)2

−
( 1

n

∑ Xi − α

σ

)2)

= n
1

n

n∑

i=1

(Xi − α

σ
− 1

n

∑ Xi − α

σ

)2

= n
X̄2 − (X̄)2

σ2
∼ χ2

n−1.


