Lecture 15

15.1 Orthogonal transformation of standard normal sample.

Consider $X_1, \ldots, X_n \sim N(0, 1)$ i.d.d. standard normal r.v. and let V be an orthogonal transformation in \mathbb{R}^n . Consider a vector $\vec{Y} = \vec{X}V = (Y_1, \ldots, Y_n)$. What is the joint distribution of Y_1, \ldots, Y_n ? It is very easy to see that each Y_i has standard normal distribution and that they are uncorrelated. Let us check this. First of all, each

$$Y_i = \sum_{k=1}^n v_{ki} X_k$$

is a sum of independent normal r.v. and, therefore, Y_i has normal distribution with mean 0 and variance

$$\operatorname{Var}(Y_i) = \sum_{k=1}^n v_{ik}^2 = 1,$$

since the matrix V is orthogonal and the length of each column vector is 1. So, each r.v. $Y_i \sim N(0, 1)$. Any two r.v. Y_i and Y_j in this sequence are uncorrelated since

$$\mathbb{E}Y_i Y_j = \sum_{k=1}^n v_{ik} v_{jk} = \vec{v}'_i \vec{v}'_j = 0$$

since the columns $\vec{v}'_i \perp \vec{v}'_i$ are orthogonal.

Does uncorrelated mean independent? In general no, but for normal it is true which means that we want to show that Y's are i.i.d. standard normal, i.e. \vec{Y} has the same distribution as \vec{X} . Let us show this more accurately. Given a vector $t = (t_1, \ldots, t_n)$, the moment generating function of i.i.d. sequence X_1, \ldots, X_n can be computed as follows:

$$\varphi(t) = \mathbb{E}e^{\vec{X}t^T} = \mathbb{E}e^{t_1X_1 + \dots + t_nX_n} = \prod_{i=1}^n \mathbb{E}e^{t_iX_i}$$

$$= \prod_{i=1}^{n} e^{\frac{t_i^2}{2}} = e^{\frac{1}{2}\sum_{i=1}^{n} t_i^2} = e^{\frac{1}{2}|t|^2}.$$

On the other hand, since $\vec{Y} = \vec{X}V$ and

$$t_1Y_1 + \ldots + t_nY_n = (Y_1, \ldots, Y_n) \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} = (Y_1, \ldots, Y_n)t^T = \vec{X}Vt^T,$$

the moment generating function of Y_1, \ldots, Y_n is:

$$\mathbb{E}e^{t_1Y_1+\dots+t_nY_n} = \mathbb{E}e^{\vec{X}Vt^T} = \mathbb{E}e^{\vec{X}(tV^T)^T}$$

But this is the moment generating function of vector \vec{X} at the point tV^T , i.e. it is equal to

$$\varphi(tV^T) = e^{\frac{1}{2}|tV^T|^2} = e^{\frac{1}{2}|t|^2},$$

since the orthogonal transformation preserves the length of a vector $|tV^T| = |t|$. This means that the moment generating function of \vec{Y} is exactly the same as of \vec{X} which means that Y_1, \ldots, Y_n have the same joint distribution as X's, i.e. i.i.d. standard normal.

Now we are ready to move to the main question we asked in the beginning of the previous lecture: What is the joint distribution of \bar{X} (sample mean) and $\bar{X}^2 - (\bar{X})^2$ (sample variance)?

Theorem. If X_1, \ldots, X_n are *i.d.d.* standard normal, then sample mean \bar{X} and sample variance $\bar{X}^2 - (\bar{X})^2$ are independent,

$$\sqrt{n}\bar{X} \sim N(0,1) \text{ and } n(\bar{X}^2 - (\bar{X})^2) \sim \chi^2_{n-1},$$

i.e. $\sqrt{n}\bar{X}$ has standard normal distribution and $n(\bar{X}^2 - (\bar{X})^2)$ has χ^2_{n-1} distribution with (n-1) degrees of freedom.

Proof. Consider a vector \vec{Y} given by transformation

$$\vec{Y} = (Y_1, \dots, Y_n) = \vec{X}V = (X_1, \dots, X_n) \begin{pmatrix} \frac{1}{\sqrt{n}} & \cdots & \cdots \\ \vdots & \cdots & \vdots \\ \frac{1}{\sqrt{n}} & \cdots & \cdots \end{pmatrix}.$$

Here we chose a first column of the matrix V to be equal to

$$\vec{v}_1 = \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right).$$

Figure 15.1: Unit Vectors.

We let the remaining columns be any vectors such that the matrix V defines orthogonal transformation. This can be done since the length of the first column vector $|\vec{v}_1| = 1$, and we can simply choose the columns $\vec{v}_2, \ldots, \vec{v}_n$ to be any orthogonal basis in the hyperplane orthogonal to vector \vec{v}_1 , as shown in figure 15.1.

Let us discuss some properties of this particular transformation. First of all, we showed above that Y_1, \ldots, Y_n are also i.i.d. standard normal. Because of the particular choice of the first column $\vec{v_1}$ in V, the first r.v.

$$Y_1 = \frac{1}{\sqrt{n}}X_1 + \ldots + \frac{1}{\sqrt{n}}X_n,$$

and, therefore,

$$\bar{X} = \frac{1}{\sqrt{n}} Y_1. \tag{15.1}$$

Next, n times sample variance can be written as

$$n(\bar{X}^2 - (\bar{X})^2) = X_1^2 + \ldots + X_n^2 - \left(\frac{1}{\sqrt{n}}(X_1 + \ldots + X_n)\right)^2$$
$$= X_1^2 + \ldots + X_n^2 - Y_1^2.$$

But the orthogonal transformation V preserves the length

$$Y_1^2 + \dots + Y_n^2 = X_1^2 + \dots + X_n^2$$

and, therefore, we get

$$n(\bar{X}^2 - (\bar{X})^2) = Y_1^2 + \ldots + Y_n^2 - Y_1^2 = Y_2^2 + \ldots + Y_n^2.$$
(15.2)

Equations (15.1) and (15.2) show that sample mean and sample variance are independent since Y_1 and (Y_2, \ldots, Y_n) are independent, $\sqrt{n}\bar{X} = Y_1$ has standard normal distribution and $n(\bar{X}^2 - (\bar{X})^2)$ has χ^2_{n-1} distribution since Y_2, \ldots, Y_n are independent

standard normal.

Consider now the case when

$$X_1,\ldots,X_n \sim N(\alpha,\sigma^2)$$

are i.i.d. normal random variables with mean α and variance σ^2 . In this case, we know that

$$Z_1 = \frac{X_1 - \alpha}{\sigma}, \cdots, Z_n = \frac{X_n - \alpha}{\sigma} \sim N(0, 1)$$

are independent standard normal. Theorem applied to Z_1, \ldots, Z_n gives that

$$\sqrt{n}\bar{Z} = \sqrt{n}\frac{1}{n}\sum_{i=1}^{n}\frac{X_i - \alpha}{\sigma} = \frac{\sqrt{n}(\bar{X} - \alpha)}{\sigma} \sim N(0, 1)$$

and

$$n(\bar{Z}^2 - (\bar{Z})^2) = n\left(\frac{1}{n}\sum_{i=1}^n \left(\frac{X_i - \alpha}{\sigma}\right)^2 - \left(\frac{1}{n}\sum_{i=1}^n \frac{X_i - \alpha}{\sigma}\right)^2\right)$$
$$= n\frac{1}{n}\sum_{i=1}^n \left(\frac{X_i - \alpha}{\sigma} - \frac{1}{n}\sum_{i=1}^n \frac{X_i - \alpha}{\sigma}\right)^2$$
$$= n\frac{\bar{X}^2 - (\bar{X})^2}{\sigma^2} \sim \chi^2_{n-1}.$$