Lecture 23

23.1 Pearson’s theorem.

Today we will prove one result from probability that will be useful in several statistical
tests.

Let us consider r boxes By, ..., B, as in figure 23.1
B1 B2 Br
Figure 23.1:
Assume that we throw n balls X1, ..., X, into these boxes randomly independently

of each other with probabilities
IP(XZ e Bl) =D1,-. ,IP(XZ € Br) = Dr,

where probabilities add up to one p; 4+ ...+ p, = 1. Let v; be a number of balls in
the jth box:

v; = #{balls X;,..., X, in the box B;} = ¥ I(X, € B)).

=1

On average, the number of balls in the jth box will be np;, so random variable v;
should be close to np;. One can also use Central Limit Theorem to describe how close
vj is to np;. The next result tells us how we can describe in some sense the closeness
of v; to np; simultaneously for all 7 < r. The main difficulty in this Thorem comes
from the fact that random variables v; for j < r are not independent, for example,
because the total number of balls is equal to n,

vVi+ ...+ 1V =n,
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i.e. if we know these numbers in n — 1 boxes we will automatically know their number
in the last box.
Theorem. We have that the random variable

—~ (v — np;)’
Sl e,
=1 P

converges in distribution to x?_, distribution with (r — 1) degrees of freedom.
Proof. Let us fix a box B;. The random variables

(X, €B)),...,1(X, € B))

that indicate whether each observation X; is in the box B; or not are ii.d. with
Bernoully distribution B(p;) with probability of success

]E[(Xl c BJ) - ]P(Xl c BJ) =Dj
and variance
Var(I(X € Bj)) = p;(1 —p;).
Therefore, by Central Limit Theorem we know that the random variable
vi—np;  _ da [(Xi € Bj) —np,
np;(1—p;) np;(1 = pj)
S I(X, € Bj) —nE

N vnVar - N1

converges to standard normal distribution. Therefore, the random variable

Vi =D g _
——— — /1 =p;N(0,1) = N(0,1 - p;)

npj J J
converges to normal distribution with variance 1 — p;. Let us be a little informal and
simply say that

Vi —mp; _ Zj
npj
where random variable Z; ~ N (0,1 — p;).

We know that each Z; has distribution N (0,1 — p;) but, unfortunately, this does
not tell us what the distribution of the sum 3 Z7 will be, because as we mentioned
above 1.v.s v; are not independent and their correlation structure will play an im-
portant role. To compute the covariance between Z; and Z; let us first compute the
covariance between

Vi —np; Vi —np;

and
np; \/ P




LECTURE 23. 91

which is equal to

Vi — npj Vj — Np; 1 9
E = (BEv,v; — Evinp; — Evnp; + n”p;p;)
VB D By o ’

1 (E g ) 1
= ViVj — NPinp; — NP;Np; — 1°pPiP;) =
To compute Ev;v; we will use the fact that one ball cannot be inside two different
boxes simultaneously which means that

(Eviv; — n’pip;).

[(X, € B)I(X, € B)) = 0. (23.1)

Therefore,

Evy, = IE(Z I(X; € BZ-)> (Z I(Xy € Bj)) =EY (X € B)I(Xy € B))
=1 =1 Ll
= E) I(X,€ B)I(Xy € B))+EY I(X; € B))I(Xy € By)
=1 R

-

this equals ‘t,o 0 by (23.1)
= n(n — 1)EI(X1 S Bj)EI(Xl/ S Bj) = n(n - 1)]?@])]
Therefore, the covariance above is equal to

1
N\/DiPj

(n(n — Dpipj — n2pipj> = —/DiD;

To summarize, we showed that the random variable
T o ) 2 s
Sl sz
. np; . J
j=1 ! j=1
where random variables 7y, ..., Z, satisty

lE)ZZ.2 = 1 — p; and covariance EZ;Z; = —,/pip;.

To prove the Theorem it remains to show that this covariance structure of the sequence
of Zy’s will imply that their sum of squares has distribution x?_,. To show this we
will find a different representation for > Z2.

Let g1, -+, g, be ii.d. standard normal sequence. Consider two vectors

g:(gla--wgr) andﬁ: (\/Eaa\/ﬁ)
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and consider a vector §— (g p)p, where §-p' = g1/p1+ . ..+ gr/Pr is a scalar product
of g and p. We will first prove that

—

g — (g - p)p has the same joint distribution as (71, ..., Z,). (23.2)

To show this let us consider two coordinates of the vector § — (g - p)p':

i" g = avpivei and j g =Y g /Bivp;
=1 =1

and compute their covariance:

E(gi - igz\/ﬁx/ﬁ-) (gj - igz\/ﬁ\/p_j>

= VB~ VBVE+ S /P = ~2/BF; + BT = ~ P
1=1
Similarly, it is easy to compute that
E(Qi - igz\/ﬁz\/@y =1—pi
=1
This proves (23.2), which provides us with another way to formulate the convergence,

namely, we have
" i 2 T
Z<w> — Z(ith coordinate)?

n
j=1 Dj i=1

where we consider the coorinates of the vector §— (g-p)p. But this vector has a simple
geometric interpretation. Since vector p is a unit vector:

T

=S (R =Y m =1,

=1

vector V; = (p- g)p'is the projection of vector g on the line along p’ and, therefore,
vector 172 = ¢ — (p’- §)p will be the projection of ¢ onto the plane orthogonal to p, as
shown in figures 23.2 and 23.3.

Let us consider a new orthonormal coordinate system with the last basis vector
(last axis) equal to p. In this new coordinate system vector g will have coordinates

—

qd=(4,...9.) =gV
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Rotation
_—

Figure 23.3: Rotation of the coordinate system.

obtained from ¢ by orthogonal transformation V' that maps canonical basis into this
new basis. But we proved a few lectures ago that in that case ¢i, ..., g, will also be
i.i.d. standard normal. From figure 23.3 it is obvious that vector Vs = § — (P §)pin
the new coordinate system has coordinates

(917 e ’97/“—170)

and, therefore,

T

Z(ith coordinate)® = (¢})* + ...+ (¢._,)*.
i=1

But this last sum, by definition, has x?_; distribution since g¢,---,g._, are i.i.d.
standard normal. This finishes the proof of Theorem.



