Lecture 28

28.1 Kolmogorov-Smirnov test.

Suppose that we have an i.i.d. sample X1, ..., X,, with some unknown distribution P
and we would like to test the hypothesis that P is equal to a particular distribution
Py, i.e. decide between the following hypoheses:

Hl P = ]P()
Hs :  otherwise

We considered this problem before when we talked about goodness-of-fit test for
continuous distribution but, in order to use Pearson’s theorem and chi-square test,
we discretized the distribution and considered a weaker derivative hypothesis. We
will now consider a different test due to Kolmogorov and Smirnov that avoids this
discretization and in a sense is more consistent.

Let us denote by F(x) = P(X; < z) a cumulative distribution function and
consider what is called an empirical distribution function:

Fu(z) = Po(X < 2) = %il(}@ <)

that is simply the proportion of the sample points below level x. For any fixed point
x € R the law of large numbers gives that

Fn(x):%znjl(X,- <z)—-EI(X,<z)=P(X; <z)=F(z),

i.e. the proportion of the sample in the set (—oo, x| approximates the probability of
this set.

It is easy to show from here that this approximation holds uniformly over all
x € R:

sup |Fy(z) — F(z)] — 0
zeR
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Figure 28.1: C.d.f. and empirical d.f.

i.e. the largest difference between F,, and F' goes to 0 in probability. The key
observation in the Kolmogorov-Smirnov test is that the distribution of this supremum
does not depend on the distribution P of the sample.
Theorem 1. The distribution of sup,cg |Fn(z) — F(z)| does not depend on F'.
Proof. For simplicity, let us assume that F' is continuous, i.e. the distribution is
continuous. Let us define the inverse of F' by

F~Yy) = min{z : F(z) > y}.
Then making the change of variables y = F(x) or z = F~(y) we can write

P(sup |[F(z) — F(z)] < t) = P(sup |F,(F'(y)) -yl < 1).

zeR 0<y<1

Using the definition of the empirical d.f. F), we can write

EL(F ) = S I < F () = Y I(F(X) <)

and, therefore,

%il(F(Xi)Sy)—y‘ §t>.

=

P(sup |F,(F7'(y) =yl < 1) =P sup

0<y<1 0<y<1

The distribution of F'(X;) is uniform on the interval [0, 1] because the c.d.f. of F'(X})
1s

P(F(X) <t)=P(X, < F'(t))=F(F'(t) =t

Therefore, the random variables

U= F(X;) fori<n
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are independent and have uniform distribution on [0, 1] and, combining with the
above, we proved that

z€R 0<y<1 -

Plsup |Fule) ~ F(@) <) =P sup |- 310 <) —y| <1)

which is clearly independent of F'.
O
Next, we will formulate the main result on which the KS test is based. First of
all, let us note that for a fixed x the CLT implies that

ViFy(@) = F(x)) = N(0, F(@)(1 - F(x)))
because F'(x)(1 — F(x)) is the variance of I(X; < z). If turns out that if we consider

Vnsup |[Fy(z) = F(x)]

zeR

it will also converge to some distribution.
Theorem 2. We have,

P(vnsupyer|Fp(z) — F(z)| <t) — H(t) =1 — QZ(_l)i—16_2i2t

where H(t) is the c.d.f. of Kolmogorov-Smirnov distribution.
If we formulate our hypotheses in terms of cumulative distribution functions:

H,: F = F, for a given[kj
H,: otherwise

then based on Theorems 1 and 2 the Kolmogorov-Smirnov test is formulated as fol-

lows:
5= Hl : Dn S C
o Hy: D, >c

where
D, = v/nsup |F,(z) — Fo(x)]

z€R

and the threshold ¢ depends on the level of significance a and can be found from the
condition

In Theorem 1 we showed that the distribution of D,, does not depend on the unknown
distribution F' and, therefore, it can tabulated. However, the distribution of D,
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depends on n so one needs to use advanced tables that contain the table for the
sample size n of interest. Another way to find ¢, especially when the sample size is
large, is to use Theorem 2 which tells that the distribution of D,, can be approximated
by the Kolmogorov-Smirnov distribution and, therefore,

a=P(D, >clH))~1— H(c).

and we can use the table for H to find c.
To explain why Kolmogorov-Smirnov test makes sense let us imagine that the first
hypothesis fails and Hy holds which means that ' # Fj.

F (true)

FO (hypothesis)
Fn

Figure 28.2: The case when F' # Fy.

Since F' is the true c.d.f. of the data, by law of large numbers the empirical d.f.
F, will converge to F' as shown in figure 28.2 and as a result it will not approximate
Fy, i.e. for large n we will have

sup | Fy,(x) — Fo(x)| >0

for small enough ¢. Multiplying this by /n will give that

D,, = /nsup |F,(z) — Fo(x)| > v/nd.
zeR

If Hy fails then D, > /nd — 400 as n — oo. Therefore, it seems natural to reject
H, when D,, becomes too large which is exactly what happens in KS test.

Example. Let us consider a sample of size 10:
0.58,0.42,0.52,0.33,0.43,0.23, 0.58,0.76, 0.53, 0.64
and let us test the hypothesis that the distribution of the sample is uniform on [0, 1]:

Hy: F(x)=Fy(z)==x
H, :  otherwise
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Figure 28.3: F,, and Fj in the example.

The figure 28.3 shows the c.d.f. F and empirical d.f. F,(z).

To compute D,, we notice that the largest difference between Fy(z) and F,(x) is
achieved either before or after one of the jumps, i.e.

_ B |F.(X;) — F(X;)| - before the ith jump
0221 [Fl) = Fl)] = lnslzaé}iz{ |F.(X;) — F(X;)| - after the ith jump

Writing these differences for our data we get

before the jump after the jump

10— 0.23 0.1 —0.23
0.1 —0.33| 0.2 — 0.33]
0.2 — 0.42| 0.3 - 0.42|

0.3 — 0.43] 0.4 — 0.43]

The largest value will be achieved at |0.9 — 0.64| = 0.26 and, therefore,

D, = /n sup |EF,(z)— x| =10 x 0.26 = 0.82.

0<z<1

If we take the level of significance av = 0.05 then

1— H(c)=0.05=c=1.35
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and according to KS test

Hy: D, >1.35
we accept the null hypothesis H; since D,, = 0.82 < ¢ = 1.35.

5_{}11: D, <1.35



