
Lecture 3

3.1 Method of moments.

Consider a family of distributions { � θ : θ ∈ Θ} and and consider a sample X =
(X1, . . . , Xn) of i.i.d. random variables with distribution � θ0 , where θ0 ∈ Θ. We
assume that θ0 is unknown and we want to construct an estimate θ̂ = θ̂n(X1, · · · , Xn)
of θ0 based on the sample X.

Let us recall some standard facts from probability that we be often used through-
out this course.

• Law of Large Numbers (LLN):

If the distribution of the i.i.d. sample X1, . . . , Xn is such that X1 has finite
expectation, i.e. | �

X1| < ∞, then the sample average

X̄n =
X1 + . . . + Xn

n
→ �

X1

converges to the expectation in some sense, for example, for any arbitrarily
small ε > 0,

� (|X̄n − �
X1| > ε) → 0 as n → ∞.

Convergence in the above sense is called convergence in probability.

Note. Whenever we will use the LLN below we will simply say that the av-
erage converges to the expectation and will not mention in what sense. More
mathematically inclined students are welcome to carry out these steps more
rigorously, especially when we use LLN in combination with the Central Limit
Theorem.

• Central Limit Theorem (CLT):

If the distribution of the i.i.d. sample X1, . . . , Xn is such that X1 has finite
expectation and variance, i.e. | �

X1| < ∞ and Var(X) < ∞, then
√

n(X̄n − �
X1) →d N(0, σ2)
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converges in distribution to normal distribution with zero mean and variance
σ2, which means that for any interval [a, b],

�
(√

n(X̄n − �
X1) ∈ [a, b]

)

→
∫ b

a

1√
2πσ

e−
x2

2σ2 dx.

Motivating example. Consider a family of normal distributions

{N(α, σ2) : α ∈ �
, σ2 ≥ 0}.

Consider a sample X1, . . . , Xn ∼ N(α0, σ
2
0) with distribution from this family and

suppose that the parameters α0, σ0 are unknown. If we want to estimate these pa-
rameters based on the sample then the law of large numbers above provides a natural
way to do this. Namely, LLN tells us that

α̂ = X̄n → �
X1 = α0 as n → ∞

and, similarly,

X2
1 + . . . + X2

n

n
→ �

X2
1 = Var(X) +

�
X2 = σ2

0 + α2
0.

These two facts imply that

σ̂2 =
X2

1 + · · · + X2
n

n
−

(X1 + · · ·+ Xn

n

)2

→ �
X2 − (

�
X)2 = σ2

0.

It, therefore, makes sense to take α̂ and σ̂2 as the estimates of unknown α0, σ
2
0 since

by the LLN for large sample size n these estimates will approach the unknown pa-
rameters.

We can generalize this example as follows.
Suppose that the parameter set Θ ⊆ �

and suppose that we can find a function
g : X → �

such that a function

m(θ) =
�

θg(X) : Θ → Im(Θ)

has a continuous inverse m−1. Here
�

θ denotes the expectation with respect to the
distribution � θ. Take

θ̂ = m−1(ḡ) = m−1
(g(X1 + · · · + g(Xn)

n

)

as the estimate of θ0. (Here we implicitely assumed that ḡ is always in the set Im(m).)
Since the sample comes from distribution with parameter θ0, by LLN we have

ḡ → �
θ0g(X1) = m(θ0).
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Since the inverse m−1 is continuous, this implies that our estimate

θ̂ = m−1(ḡ) → m−1(m(θ0)) = θ0

converges to the unkown parameter θ0.
Typical choices of the function g are g(x) = x or x2. The quantity

�
Xk is called

the kth moment of X and, hence, the name - method of moments.
Example: Family of exponential distributions E(α) with p.d.f.

p(x) =

{
αe−αx, x ≥ 0,
0, x < 0

Take g(x) = x. Then

m(α) =
�

αg(X) =
�

αX =
1

α
.

( 1
α

is the expectation of exponential distribution, see Pset 1.) Let us recall that we
can find inverse by solving for α the equation

m(α) = β, i.e. in our case
1

α
= β.

We have,

α = m−1(β) =
1

β
.

Therefore, we take

α̂ = m−1(ḡ) = m−1(X̄) =
1

X̄

as the estimate of unkown α0.
Take g(x) = x2. Then

m(α) =
�

αg(X2) =
�

αX2 =
2

α2
.

The inverse is

α = m−1(β) =

√
2

β

and we take

α̂ = m−1(ḡ) = m−1(X̄2) =

√

2

X̄2

as another estimate of α0.
The question is, which estimate is better?
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1. Consistency. We say that an estimate θ̂ is consistent if θ̂ → θ0 in probability
as n → ∞.. We have shown above that by construction the estimate by method
of moments is always consistent.

2. Asymptotic Normality. We say that θ̂ is asymptotically normal if

√
n(θ̂ − θ0) →d N(0, σ2

θ0
)

where σ2
θ0
≡ is called the asymptotic variance of the estimate θ̂.

Theorem. The estimate θ̂ = m−1(ḡ) by the method of moments is asymptotically
normal with asymptotic variance

σ2
θ0

=
V arθ0(g)

(m′(θ0))2
.

Proof. Writing Taylor expansion of the function m−1 at point m(θ0) we have

m−1(ḡ) = m−1(m(θ0)) + (m−1)′(m(θ0))(ḡ − m(θ0)) +
(m−1)′′(c)

2!
(ḡ − m(θ0))

2

where c ∈ [m(θ0), ḡ]. Since m−1(m(θ0)) = θ0, we get

m−1(ḡ) − θ0 = (m−1)′(m(θ0))(ḡ − m(θ0) +
(m−1)′′(c)

2!
)(ḡ − m(θ0)

2

Let us prove that the left hand side multiplied by
√

n converges in distribution to
normal distribution.

√
n(m−1(ḡ) − θ0) = (m−1)′(m(θ0))

√
n(ḡ − m(θ0))

︸ ︷︷ ︸
+

(m−1)′′(c)

2!

1√
n

(
√

n(ḡ − m(θ0))
︸ ︷︷ ︸

)2

(3.1)
Let us recall that

ḡ =
g(X1) + · · ·+ g(Xn)

n
,

�
g(X1) = m(θ0).

Central limit theorem tells us that

√
n(ḡ − m(θ0) → N(0, Varθ0(g(X1)))

where convergence is in distribution. First of all, this means that the last term in
(3.1) converges to 0 (in probability), since it has another factor of 1/

√
n. Also, since

from calculus the derivative of the inverse

(m−1)′(m(θ0)) =
1

m′(m−1(m(θ0)))
=

1

m′(θ0)
,



LECTURE 3. 12

the first term in (3.1) converges in distribution to

(m−1)′(m(θ0))
√

n(m−1(ḡ) − θ0) →
1

m′(θ0)
N(0, Varθ0(g(X1))) = N

(

0,
V arθ0(g(X1))

(m′(θ0))2

)

What this result tells us is that the smaller
V arθ0

(g)

m′(θ0)
is the better is the estimate

θ̂ in the sense that it has smaller deviations from the unknown parameter θ0 asymp-
totically.


