Lecture 5

Let us give one more example of MLE.
Example 3. The uniform distribution U|0, 6] on the interval [0, 0] has p.d.f.

L o<a<o
_ 0 = =Y
f(wlf) = { 0, otherwise
The likelihood function
“ 1
o(0) =1 /(xil0) = Zo1(X,.. X € [0,6))

= einl(max(Xl, . ,Xn) S 9)

Here the indicator function /(A) equals to 1 if A happens and 0 otherwise. What we
wrote is that the product of p.d.f. f(X;|f) will be equal to 0 if at least one of the
factors is 0 and this will happen if at least one of X;s will fall outside of the interval
[0, 0] which is the same as the maximum among them exceeds . In other words,

0(#) =0if < max(Xy,...,X,),
and

0(0) = Gi” if 0 > max(Xy,...,X,).

Therefore, looking at the figure 5.1 we see that 0 = max(X1,...,X,) is the MLE.

5.1 Consistency of MLE.

Why the MLE 6 converges to the unkown parameter 6,7 This is not immediately
obvious and in this section we will give a sketch of why this happens.
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®(9)

max(X1, ..., Xn)

Figure 5.1: Maximize over 6

First of all, MLE 0 is a maximizer of
L,0 = L zn:l f(X;]0)
n’ == o 0g i

which is just a log-likelihood function normalized by % (of course, this does not affect
the maximization). L,(f) depends on data. Let us consider a function I(X]0) =
log f(X6) and define

L(0) = Eq,1(X]0),

where we recall that 6 is the true uknown parameter of the sample Xi,..., X,,. By
the law of large numbers, for any 6,

L (0) — Eg,1(X|6) = L(0).

Note that L(#) does not depend on the sample, it only depends on 6. We will need
the following
Lemma. We have, for any 0,

L(0) < L(6y).
Moreover, the inequality is strict L(0) < L(6y) unless
Pg, (f(X1]0) = f(X160)) = 1.

which means that Py = Py, .
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Proof. Let us consider the difference

f(X19)
f(X160)

L(0) — L(6) = Eq, (log f(X|0) — log f(X|6h)) = Eg, log

logt

0 /1

Figure 5.2: Diagram (¢ — 1) vs. logt

Since (t — 1) is an upper bound on logt (see figure 5.2) we can write

7(X]6) FXI) N [ fl)
B tox i < By Y = | (g — 1o

_ /f(x|9)dx - /f(x|90)dx —1-1=0.

Both integrals are equal to 1 because we are integrating the probability density func-
tions. This proves that L(0) — L(6p) < 0. The second statement of Lemma is also
clear.

O

We will use this Lemma to sketch the consistency of the MLE.

Theorem: Under some reqularity conditions on the family of distributions, MLE
0 is consistent, 1.e. 6 — Oy as n — oo.

The statement of this Theorem is not very precise but but rather than proving a
rigorous mathematical statement our goal here to illustrate the main idea. Mathe-
matically inclined students are welcome to come up with some precise statement.

Proof.
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We have the following facts:

1. 6 is the maximizer of L, () (by definition).

2. By is the maximizer of L(#) (by Lemma).

3. V0 we have L, () — L(6) by LLN.

This situation is illustrated in figure 5.3. Therefore, since two functions L,, and L
are getting closer, the points of maximum should also get closer which exactly means
that 6 — 6.

O

Figure 5.3: Lemma: L(0) < L(6y)

5.2 Asymptotic normality of MLE. Fisher infor-
mation.

We want to show the asymptotic normality of MLE, i.e. that
V(0 — 0y) =% N(0,02,, ) for some 02, .

Let us recall that above we defined the function I(X]6) = log f(X1#). To simplify
the notations we will denote by I'(X10),1"(X|0), etc. the derivatives of I(X|#) with
respect to 6.
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Definition. (Fisher information.) Fisher Information of a random variable X
with distribution Py, from the family {IPy : § € O} is defined by

1(06) = B (U(X[00))? = B, (=5 log F(X[00))

Next lemma gives another often convenient way to compute Fisher information.
Lemma. We have,

2

1 8
Eg,l"(X1600) = Eeow log f(X|6o) = —1(6o).

Proof. First of all, we have

. F(X19)
FIX10)

I'(X16) = (log f(X16))

and

o 1UX10) (X))
(g JXIO)" = "5 X1y~ P(xl0)

Also, since p.d.f. integrates to 1,

[ ralpyas=1.

if we take derivatives of this equation with respect to 6 (and interchange derivative
and integral, which can usually be done) we will get,

0 0? "
/%f(ﬂ@)dx = (0 and wf(ﬂ@)d:c = /f (x]0)dz = 0.
To finish the proof we write the following computation

2

Eal'(X}00) = Bayrslog S(X100) = | log f(ul6h))" slth)ds

J" ()60 1/ (x]00)\2
/< f((x\[‘)o)) B (f((x|‘90))) >f(:c|90)dx

- / F7(|00)dz — By (I'(X]00))? = 0 — (6 = —I(6y).

We are now ready to prove the main result of this section.
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Theorem. (Asymptotic normality of MLE.) We have,

Va0 — o) — N (o, ﬁ)

Proof. Since MLE 6 is maximizer of L, (0) = L3~ log f(X;|0) we have,
L' (6) = 0.

Let us use the Mean Value Theorem

fla) = f(b)
a—b

= f'(c) or f(a) = f(b) + f'(c)(a —b) for c € [a, ]
with f(0) = L. (A),a = 0 and b = 6. Then we can write,

0= L,(0) = L(6) + L (8:1)(0 — 00)
for some 0; € [, 6y]. From here we get that

g L) VAL ()
0 — 0, = T d /(0 — ) R (5.1)

Since by Lemma in the previous section 6y is the maximizer of L(6), we have
L'(6p) = Eg,l'(X]6y) = 0. (5.2)

Therefore, the numerator in (5.1)
Vi) — vi( S e - o) 53)
! [ Z
]' - / !/ !/
= V(5 D U(Xilfe) = Eayl/(Xalfo) ) — N (0, Varg, (1(X1/60))
i=1

converges in distribution by Central Limit Theorem.
Next, let us consider the denominator in (5.1). First of all, we have that for all 0,

L'(0) = % > 1"(Xi]0) — Eg,l"(X1]6) by LLN. (5.4)

Also, since 6, € [é, o] and by consistency result of previous section 0 — 0y, we have
0, — 6y. Using this together with (5.4) we get

L"(0,) — Eg,"(X1]6) = —I(6) by Lemma above.
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Combining this with (5.3) we get

VRLLG) () Var((X160)
oy~ YO ey )

Finally, the variance,
Varg, (I'(X160)) = Eo, ('(X160))* — (B, '(x]60))* = 1(60) — 0

where in the last equality we used the definition of Fisher information and (5.2).



