
Lecture 5

Let us give one more example of MLE.
Example 3. The uniform distribution U [0, θ] on the interval [0, θ] has p.d.f.

f(x|θ) =

{
1
θ
, 0 ≤ x ≤ θ,

0, otherwise

The likelihood function

ϕ(θ) =
n∏

i=1

f(Xi|θ) =
1

θn
I(X1, . . . , Xn ∈ [0, θ])

=
1

θn
I(max(X1, . . . , Xn) ≤ θ).

Here the indicator function I(A) equals to 1 if A happens and 0 otherwise. What we
wrote is that the product of p.d.f. f(Xi|θ) will be equal to 0 if at least one of the
factors is 0 and this will happen if at least one of Xis will fall outside of the interval
[0, θ] which is the same as the maximum among them exceeds θ. In other words,

ϕ(θ) = 0 if θ < max(X1, . . . , Xn),

and

ϕ(θ) =
1

θn
if θ ≥ max(X1, . . . , Xn).

Therefore, looking at the figure 5.1 we see that θ̂ = max(X1, . . . , Xn) is the MLE.

5.1 Consistency of MLE.

Why the MLE θ̂ converges to the unkown parameter θ0? This is not immediately
obvious and in this section we will give a sketch of why this happens.
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ϕ(θ)

θ

max(X1, ..., Xn)

Figure 5.1: Maximize over θ

First of all, MLE θ̂ is a maximizer of

Lnθ =
1

n

n∑

i=1

log f(Xi|θ)

which is just a log-likelihood function normalized by 1
n

(of course, this does not affect
the maximization). Ln(θ) depends on data. Let us consider a function l(X|θ) =
log f(X|θ) and define

L(θ) =
�

θ0l(X|θ),
where we recall that θ0 is the true uknown parameter of the sample X1, . . . , Xn. By
the law of large numbers, for any θ,

Ln(θ) → �
θ0 l(X|θ) = L(θ).

Note that L(θ) does not depend on the sample, it only depends on θ. We will need
the following

Lemma. We have, for any θ,

L(θ) ≤ L(θ0).

Moreover, the inequality is strict L(θ) < L(θ0) unless

� θ0(f(X|θ) = f(X|θ0)) = 1.

which means that � θ = � θ0 .
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Proof. Let us consider the difference

L(θ) − L(θ0) =
�

θ0(log f(X|θ) − log f(X|θ0)) =
�

θ0 log
f(X|θ)
f(X|θ0)

.

t

t−1

log t

10

Figure 5.2: Diagram (t − 1) vs. log t

Since (t − 1) is an upper bound on log t (see figure 5.2) we can write

�
θ0 log

f(X|θ)
f(X|θ0)

≤ �
θ0

( f(X|θ)
f(X|θ0)

− 1
)

=

∫ ( f(x|θ)
f(x|θ0)

− 1
)

f(x|θ0)dx

=

∫

f(x|θ)dx −
∫

f(x|θ0)dx = 1 − 1 = 0.

Both integrals are equal to 1 because we are integrating the probability density func-
tions. This proves that L(θ) − L(θ0) ≤ 0. The second statement of Lemma is also
clear.

We will use this Lemma to sketch the consistency of the MLE.
Theorem: Under some regularity conditions on the family of distributions, MLE

θ̂ is consistent, i.e. θ̂ → θ0 as n → ∞.
The statement of this Theorem is not very precise but but rather than proving a

rigorous mathematical statement our goal here to illustrate the main idea. Mathe-
matically inclined students are welcome to come up with some precise statement.

Proof.
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We have the following facts:
1. θ̂ is the maximizer of Ln(θ) (by definition).
2. θ0 is the maximizer of L(θ) (by Lemma).
3. ∀θ we have Ln(θ) → L(θ) by LLN.
This situation is illustrated in figure 5.3. Therefore, since two functions Ln and L

are getting closer, the points of maximum should also get closer which exactly means
that θ̂ → θ0.

MLE
θ0

θ

θ̂

θL(  )

θLn(  )

Figure 5.3: Lemma: L(θ) ≤ L(θ0)

5.2 Asymptotic normality of MLE. Fisher infor-

mation.

We want to show the asymptotic normality of MLE, i.e. that

√
n(θ̂ − θ0) →d N(0, σ2

MLE) for some σ2
MLE.

Let us recall that above we defined the function l(X|θ) = log f(X|θ). To simplify
the notations we will denote by l′(X|θ), l′′(X|θ), etc. the derivatives of l(X|θ) with
respect to θ.
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Definition. (Fisher information.) Fisher Information of a random variable X
with distribution � θ0 from the family { � θ : θ ∈ Θ} is defined by

I(θ0) =
�

θ0(l
′(X|θ0))

2 ≡ �
θ0

( ∂

∂θ
log f(X|θ0)

)2

.

Next lemma gives another often convenient way to compute Fisher information.
Lemma. We have,

�
θ0 l

′′(X|θ0) ≡
�

θ0

∂2

∂θ2
log f(X|θ0) = −I(θ0).

Proof. First of all, we have

l′(X|θ) = (log f(X|θ))′ =
f ′(X|θ)
f(X|θ)

and

(log f(X|θ))′′ =
f ′′(X|θ)
f(X|θ) − (f ′(X|θ))2

f 2(X|θ) .

Also, since p.d.f. integrates to 1,

∫

f(x|θ)dx = 1,

if we take derivatives of this equation with respect to θ (and interchange derivative
and integral, which can usually be done) we will get,

∫
∂

∂θ
f(x|θ)dx = 0 and

∫
∂2

∂θ2
f(x|θ)dx =

∫

f ′′(x|θ)dx = 0.

To finish the proof we write the following computation

�
θ0l

′′(X|θ0) =
�

θ0

∂2

∂θ2
log f(X|θ0) =

∫

(log f(x|θ0))
′′f(x|θ0)dx

=

∫ (f ′′(x|θ0)

f(x|θ0)
−

(f ′(x|θ0)

f(x|θ0)

)2)

f(x|θ0)dx

=

∫

f ′′(x|θ0)dx − �
θ0(l

′(X|θ0))
2 = 0 − I(θ0 = −I(θ0).

We are now ready to prove the main result of this section.
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Theorem. (Asymptotic normality of MLE.) We have,

√
n(θ̂ − θ0) → N

(

0,
1

I(θ0)

)

.

Proof. Since MLE θ̂ is maximizer of Ln(θ) = 1
n

∑n
i=1 log f(Xi|θ) we have,

L′
n(θ̂) = 0.

Let us use the Mean Value Theorem

f(a) − f(b)

a − b
= f ′(c) or f(a) = f(b) + f ′(c)(a − b) for c ∈ [a, b]

with f(θ) = L′
n(θ), a = θ̂ and b = θ0. Then we can write,

0 = L′
n(θ̂) = L′

n(θ0) + L′′
n(θ̂1)(θ̂ − θ0)

for some θ̂1 ∈ [θ̂, θ0]. From here we get that

θ̂ − θ0 = −L′
n(θ0)

L′′
n(θ̂1)

and
√

n(θ̂ − θ0) = −
√

nL′
n(θ0)

L′′
n(θ̂1)

. (5.1)

Since by Lemma in the previous section θ0 is the maximizer of L(θ), we have

L′(θ0) =
�

θ0l
′(X|θ0) = 0. (5.2)

Therefore, the numerator in (5.1)

√
nL′

n(θ0) =
√

n
( 1

n

n∑

i=1

l′(Xi|θ0) − 0
)

(5.3)

=
√

n
( 1

n

n∑

i=1

l′(Xi|θ0) −
�

θ0l
′(X1|θ0)

)

→ N
(

0, Varθ0(l
′(X1|θ0))

)

converges in distribution by Central Limit Theorem.
Next, let us consider the denominator in (5.1). First of all, we have that for all θ,

L′′
n(θ) =

1

n

∑

l′′(Xi|θ) →
�

θ0l
′′(X1|θ) by LLN. (5.4)

Also, since θ̂1 ∈ [θ̂, θ0] and by consistency result of previous section θ̂ → θ0, we have
θ̂1 → θ0. Using this together with (5.4) we get

L′′
n(θ̂1) →

�
θ0l

′′(X1|θ0) = −I(θ0) by Lemma above.
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Combining this with (5.3) we get

−
√

nL′
n(θ0)

L′′
n(θ̂1)

→ N
(

0,
Varθ0(l

′(X1|θ0))

(I(θ0))2

)

.

Finally, the variance,

Varθ0(l
′(X1|θ0)) =

�
θ0(l

′(X|θ0))
2 − (

�
θ0l

′(x|θ0))
2 = I(θ0) − 0

where in the last equality we used the definition of Fisher information and (5.2).


