Lecture 7

We showed that
Eo(S — m(@), < (Bo(S — m(8)))2(n1(9))"2.

Next, let us compute the left hand side. We showed that Eyl’(X;|0) = 0 which implies
that
Eoll, = > Eol'(X;]0) = 0

and, therefore,
Eo(S —m(0)l, =EpS I, — m(0)Egl,, = EoS I..
Let X = (X3,...,X,) and denote by
p(X]0) = [(X1]0) ... f(Xn]0)

the joint p.d.f. (or likelihood) of the sample X7, ..., X,, We can rewrite [/, in terms
of this joint p.d.f. as

0
=125 Zlogf (Xi16) = g5 log #(X10) = -

Therefore, we can write

. ¢'(X19) ¢'(X19)
EoSl!, = ]EgS(X)Lp /S(X) X 9)¢(X)dX
B

_ /S(X)go’( ae/SX (X[0)AX = S yS(X) = i (0)

Of course, we integrate with respect to all coordinates, i.e. dX = dX;...dX,. We
finally proved that

m'(6) < (Eo(S — m(6))*)"*(n1(6))"/? = (Varg(S))"/*(n1(6))"*
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which implies Rao-Cramer inequality.
l ) 2
Vary(S) > (m'(0))"
n

The inequality will become equality only if there is equality in the Cauchy in-
equality applied to random variables

S —m(f) and I,.

But this can happen only if there exists ¢ = ¢() such that

S —m(h) =t(O), =t(h szw

7.1 Efficient estimators.
Definition: Consider statistic S = S(X1,...,X,) and let
m(@) = EgS(Xl, c. 7Xn)

We say that S is an efficient estimate of m(0) if

E@(S _ m(g))Q — (m,<9>>2

i.e. equality holds in Rao-Cramer’s inequality.
In other words, efficient estimate S is the best possible unbiased estimate of m(6)
in a sense that it achieves the smallest possible value for the average squared deviation

Ey(S — m(0))? for all 6.

We also showed that equality can be achieved in Rao-Cramer’s inequality only if

0) Z I'(X;]0) + m(6)

for some function ¢(#). The statistic S = S(X7, - - -, X,,) must a function of the sample
only and it can not depend on #. This means that efficient estimates do not always
exist and they exist only if we can represent the derivative of log-likelihood [/, as

o - / _S_m(e)
= D1 = =

where S does not depend on #. In this case, S is an efficient estimate of m(6).
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Exponential-type families of distributions. Let us consider the special case
of so called exponential-type families of distributions that have p.d.f. or p.f. f(z|0)
that can be represented as:

f(x|0) = a(0)b(z)ec®4=).

In this case we have,

I'(z|0) = % log f(x|0) = %(log a(0) +logb(x) + c(0)d(x))
_ ‘;ég)) +(0)d(x).

This implies that

> U(xi0) = SLAGN d(0)> d(X;)

2 a(0) i—1
and n & )
. 1 , @' (0
~ ;d(xi) = nc () ;l (Xilo) = W'
If we take (0)
1< AU
§ =5 2 X and () = BoS = —C 5

then S will be an efficient estimate of m(6).
Example. Consider a family of Poisson distributions II(\) with p.f.

T

f(z|\) = )\—'e_)‘ forz =0,1,...
!

This can be expressed as exponential-type distribution if we write

AT 1

—'e_’\: e = exp{log)\ x }

x! ~~ 1! ~—~—
a(d) S~ c(n) d@)

b(x)

As a result,
n

1 1 — _
S - — d Xz - — Xz = X
0 21002
is efficient estimate of its expectation m(A) = E,S = E,X; = A. We can also compute
its expectation directly using the formula above:

@) (e
B = e ~ ey N
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Maximum likelihood estimators. Another interesting consequence of Rao-
Cramer’s theorem is the following. Suppose that the MLE 6 is unbiased:

Ef = 6.

If we take S = 6 and m(0) = 0 then Rao-Cramer’s inequality implies that

Var(0) >

nl(6)

On the other hand when we showed asymptotic normality of the MLE we proved the
following convergence in distribution:

V(- 6) — N<0, %)

In particular, the variance of \/ﬁ(é — 0) converges to the variance of the normal
distribution 1/1(6), i.e.

Var(yvn(f — 6)) = nVar(d) — ﬁ

which means that Rao-Cramer’s inequality becomes equality in the limit. This prop-
erty is called the asymptotic efficiency and we showed that unbiased MLE is asymp-
totically efficient. In other words, for large sample size n it is almost best possible.



