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Lecture 7


We showed that 

� � 
ν (S − m(χ))l∈n ∀ ( ν (S − m(χ))2)1/2(nI(χ))1/2 . 

� 
Next, let us compute the left hand side. We showed that ν l

∈(X1 χ) = 0 which implies |
that 

� � � 
νl

∈ = ν l
∈(Xi χ) = 0 n |

and, therefore, 

� � � � 
ν (S − m(χ))l∈ = ν S l∈n − m(χ) ν l

∈ = νS l∈ .n n n

Let X = (X1, . . . , Xn) and denote by 

�(X χ) = f(X1 χ) . . . f(Xn χ)| | |

the joint p.d.f. (or likelihood) of the sample X1, . . . , Xn We can rewrite l∈ in terms n 

of this joint p.d.f. as 

n
� � � �∈(X χ)

l∈ = log f(Xi χ) = log �(X χ) = .n �χ 
|

�χ 
|

�(X|
|
χ)

i=1 

Therefore, we can write 

� � �∈(X|χ) � 
�∈(X χ) 

ν Sl∈ = ν S(X) = S(X) 
|

�(X)dXn �(X χ) �(X χ)

� � 

= S(X)�∈(X|χ)dX = 
�χ 

S(X)�(X χ)dX = ν S(X) = m∈(χ).|
�χ 

Of course, we integrate with respect to all coordinates, i.e. dX = dX1 . . . dXn. We 
finally proved that 

� 
m∈(χ) ∀ ( ν(S − m(χ))2)1/2(nI(χ))1/2 = (Varν (S))1/2(nI(χ))1/2 

28 



LECTURE 7. 29 

which implies Rao-Crámer inequality. 

(m∈(χ))2 

Varν (S) → . 
nI(χ) 

The inequality will become equality only if there is equality in the Cauchy in­
equality applied to random variables 

S − m(χ) and l∈ .n

But this can happen only if there exists t = t(χ) such that 

n � 
S − m(χ) = t(χ)l∈ = t(χ) l∈(Xi χ).n |

i=1 

7.1 Efficient estimators. 

Definition: Consider statistic S = S(X1, . . . , Xn) and let 

� 
m(χ) = ν S(X1, . . . , Xn). 

We say that S is an efficient estimate of m(χ) if 

� 
ν (S − m(χ))2 =

(m∈(χ))2 

,
nI(χ) 

i.e. equality holds in Rao-Crámer’s inequality. 
In other words, efficient estimate S is the best possible unbiased estimate of m(χ) 

in a sense that it achieves the smallest possible value for the average squared deviation 
� 

ν (S − m(χ))2 for all χ.

We also showed that equality can be achieved in Rao-Cr´
amer’s inequality only if 

n � 
S = t(χ) l∈(Xi χ) + m(χ)|

i=1 

for some function t(χ). The statistic S n) must a function of the sample = S(X1, · · · , X
only and it can not depend on χ. This means that efficient estimates do not always 
exist and they exist only if we can represent the derivative of log-likelihood l∈ asn 

n � 
l∈ = l∈(Xi|χ) = 

S − m(χ) 
,n t(χ)

i=1 

where S does not depend on χ. In this case, S is an efficient estimate of m(χ).
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30 LECTURE 7. 

Exponential-type families of distributions. Let us consider the special case 
of so called exponential-type families of distributions that have p.d.f. or p.f. f(x χ)|
that can be represented as: 

f(x|χ) = a(χ)b(x)e c(ν)d(x) . 

In this case we have, 

l∈(x χ) = log f(x|χ) = 
�χ 

(log a(χ) + log b(x) + c(χ)d(x))|
�χ

a∈(χ)


= + c∈(χ)d(x). 
a(χ) 

This implies that 
n	 n � a∈(χ) � 

l∈(Xi|χ) = n
a(χ)

+ c∈(χ) d(Xi) 
i=1 i=1 

and 
n	 n

1 � 1 � a∈(χ)
d(Xi) = l∈(Xi χ) − . 

n nc∈(χ) 
|

a(χ)c∈(χ)
i=1	 i=1 

If we take 
n

1 �	 � a∈(χ)
S = d(Xi) and m(χ) = ν S = 

n	
− 

a(χ)c∈(χ)
i=1 

then S will be an efficient estimate of m(χ). 
Example. Consider a family of Poisson distributions �(∂) with p.f. 

∂x 

f(x|∂) = e−� for x = 0, 1, . . . 
x! 

This can be expressed as exponential-type distribution if we write 

e
∂x 1 −� = e−� 

x! �⎛�� x! 
exp	 log ∂ x . 

�⎛�� �⎛�� 
a(�) �⎛�� 

c(�) d(x) 
b(x) 

As a result, 
n n

1 � 1 � 
¯S = d(Xi) = Xi = X 

n n 
i=1 i=1 

� � 
is efficient estimate of its expectation m(∂) = �S = �X1 = ∂. We can also compute 
its expectation directly using the formula above: 

� a∈(∂) −(−e−�) 
�S = − 

a(∂)c∈(∂)
= 

e−�( 1 = ∂. 
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Maximum likelihood estimators. Another interesting consequence of Rao-
Crámer’s theorem is the following. Suppose that the MLE χ̂ is unbiased: 

� 
χ̂ = χ. 

If we take S = χ̂ and m(χ) = χ then Rao-Crámer’s inequality implies that 

Var(χ̂) → 
1 

. 
nI(χ) 

On the other hand when we showed asymptotic normality of the MLE we proved the 
following convergence in distribution: 

� 1 �∞
n(χ̂ − χ) ≈ N 0, . 

I(χ) 

In particular, the variance of 
∞

n(χ̂ − χ) converges to the variance of the normal 
distribution 1/I(χ), i.e. 

1 
Var(

∞
n(χ̂ − χ)) = nVar(χ̂) ≈ 

I(χ) 

which means that Rao-Crámer’s inequality becomes equality in the limit. This prop­
erty is called the asymptotic efficiency and we showed that unbiased MLE is asymp­
totically efficient. In other words, for large sample size n it is almost best possible. 


