Lecture 8

8.1 Gamma distribution.

Let us take two parameters a > 0 and § > 0. Gamma function I'(«) is defined by

If we divide both sides by I'(«) we get
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where we made a change of variables © = By. Therefore, if we define
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then f(x|a, ) will be a probability density function since it is nonnegative and it
integrates to one.

Definition. The distribution with p.d.f. f(x|a, §) is called Gamma distribution
with parameters « and [ and it is denoted as I'(«, 3).

Next, let us recall some properties of gamma function I'(«). If we take a > 1 then
using integration by parts we can write:
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Since for o = 1 we have

we can write
re=1-1,1r3=2-1,I4)=3-2-1,5) =4-3-2-1

and proceeding by induction we get that I'(n) = (n — 1)!
Let us compute the kth moment of gamma distribution. We have,
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and the variance
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8.2 Beta distribution.

It is not difficult to show that for a;, 5 > 0
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Dividing the equation by the right hand side we get that
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which means that the function
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is a probability density function. The corresponding distribution is called Beta dis-
tribution with parameters o and 3 and it is denoted as B(a, (3).
Let us compute the kth moment of Beta distribution.
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Therefore, the mean is

Q
BX = a+p
the second moment is
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and the variance is
Var(X) = ab
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