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Problems from John A. Rice, Third Edition. [Chapter.Section.P roblem] 

1. Problem 6.4.1 

Z ∼ N(0, 1) and U ∼ χ2 and Z and U are independent. n 
T = Z/ U/n a Student’s t random variable with n degrees 

of freedom. 

Find the density function of T. 

Solution: 

√1 −1 2x• The density of Z is fZ (z) = e 2 , −∞ < x < +∞. 
2π  • The density of U is 

1 (n/2)−1 −u/2u e , if u > 0 
Γ(n/2)2n/2

fU (u) =
0	 , if u ≤ 0 

•	 Because Z and U are independent their joint density is 

fZ,U (z, u) = fZ (z)fU (u) 

 •	 Consider transforming (Z, U) to (T, V ), where 

T = Z/ U/n and V = U, 

computing the joint density of (T, V ) and then integrating out V 
to obtain the marginal density of T . 

 Determine the functions g(T, V ) = Z and h(T, V ) = U 
g(T, V ) = V/nT 
h(T, V ) = V 

Then the joint density of (T, V ) is given by 
fT,V (t, v) = fZ,U (g(t, v), h(t, v)) × J 

where J is the Jacobian of the transformation from (Z, U) to 
(Z, U). 
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Compute J : 
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The joint density of (T, V ) is thus 
fT,V (t, v) = fZ (g(t, v)) × fU (h(t, v)) × J√1
 1v/nt)2 ×e
 −

1 
2
( (n/2)−1 −v/2 e
√
 ×
 v/n
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2π Γ(n/2)2n/2 
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Integrate over v to obtain the marginal density of T :
a ∞ 

(n+1)−1 )= √ v
 e
 

fT (t) fT,V (t, v)dv= 0J ∞ 1
 
= √ v
 

21 
2

(1+ t
n

(n+1)−1
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− v 
e )dv 

0 2πnΓ(n/2)2n/2J ∞1 21 
2

(1+ t
n2

− v 

2πnΓ(n/2)2n/2 0 

The integral factor can be evaluated by recognizing that it 
is identical to integrating a Gamma(α, λ) density function 
apart from the normalization constant, with α = (n + 1)/2 

1and λ = (1 + t
2 
), that is 2 n a ∞ 1 λα α−1 −λvdv1 = v e0 Γ(α)a ∞ α−1 −λvdvSo Γ(α)λ−α = v e0 

which givesJ ∞ 

(n+1)−1 )dv= √ v
 e
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)]−(n+1)/2= Γ((n + 1)/2) × [1 (1 + t
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2 n 
Finally we can write a ∞ 

= fT,V (t, v)dvfT (t) 0 

(n+1)−1 )dv = Γ(α) × λ−αv
 e
 

J ∞1
 21 
2

(1+ t
n2

− v 

2πnΓ(n/2)2n/2 0 
1 1 t2 

)]−(n+1)/2 = √ Γ((n + 1)/2) × [ (1 + 
2πnΓ(n/2)2n/2 2 n   −(n+1)/2

Γ((n + 1)/2) t2 

= √ × 1 + 
πnΓ(n/2) n

2. Suppose the random variable X has a t distribution with n degrees of 
freedom. 

(a). For what values of n is the variance finite/infinite.
 

(b). Derive a formula for the variance of X (when it is finite).
 

Solution: 

(a). For the variance of the t distribution to be finite it must have a 
finite second moment: 

(n+1)−1 )dv= √ v
 e
 

2
 

√



  

 
 

a 
E[T 2] = t2fT (t)dt < ∞. 

The integrand of this second moment calculation is proportional to 
2 t→∞t	 (n+1)/2 × t2−(n+1) ∝ t1−nt2fT (t) ∝	 −−−−−→ n(n+1)/2 

t2 

1 + 
n 

The integral of this integrand thus converges if and only if 

(1 − n) < (−1), which is equivalent to n > 2. 

(b). If n > 2, then the variance of T is finite. For such n, the mean 
of T exists and is zero, so writing T = Z/ U/n for independent 
Z ∼ N(0, 1) and U ∼ χ2 

n 

V ar(T ) = E[T 2] = E[[Z/ U/n]2] = E[nZ2/U ] 	 E
1 = n × E[Z2] × E U 

1 = 1 × n × (n−2) 
n 

= 
n − 2 

The expectation E[ 1 ] = 1/(n−2) can be computed directly for n > 2.U 

(Note that the formula is undefined for n = 2 and gives negative values 
for n < 2) 

3. 6.4.4.	 Also, add part (c) answer the question if the random variable 
T follows a standard normal distribution N(0, 1). Comment on the 
differences and why that should be. 

Solution: 

We are given that T follows a t7 distribution. The problem is solved 
by finding an expression for t0 in terms of the cumulative distribution 
function of T. 

(a). To find the t0 such that P (|T | < t0) = .9 this is equivalent to 
P (T < .95), which is solved in R using the function qt() – the quantile 
function for the t distribution 

> args(qt)
 
function (p, df, ncp, lower.tail = TRUE, log.p = FALSE)
 

>qt(.95,df=7)
 
[1] 1.894579 
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So, t0 = 1.894579.
 

(b). P (T > t0) = .05 is equivalent to P (T ≤ t0) = 1 − .05 = .95. This
 
is the same t0 found in (a).
 

> args(qt)
 
function (p, df, ncp, lower.tail = TRUE, log.p = FALSE)
 

> qt(p=.95, df=7) 
[1] 1.894579
 
# Which is equivalent to
 
> qt(p=.05, df=7, lower.tail=FALSE)
 
[1] 1.894579 

(c). For the standard normal distribution we use qnorm() – the quan­
tile function for the Normal(0, 1) distribution
 

> args(qnorm)
 
function (p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
 
NULL
 
> qnorm(.95)
 
[1] 1.644854 

> qnorm(p=.05, lower.tail=FALSE) 
[1] 1.644854 

So for both parts (a) and (b) t0 = 1.644854 for the N(0, 1) r.v. versus 
t0 = 1.894579 for the t distribution with 7 degrees of freedom.
 

The t0 values are larger for the t distribution indicating that the t
 
distribution has heavier tail areas than the Normal(0, 1) distribution.
 
This makes sense because the t distribution equals a Normal(0, 1)
 
random variable divided by a random variable with expectation equal
 
to 1 but positive variance. The possibility of the denominator of the t
 
ratio being less than 1 increases the probability of larger values.
 

4. Problem 8.10.10. 

Use the normal approximation of the Poisson distribution to sketch
 
the approximate sampling distribution of λ̂ of Example A of Section
 
8.4. According to this approximation, what is 
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P (|λ0 − λ̂| > δ) for δ = −.5, 1, 1.5, 2, 2.5 

where λ0 is the true value of λ. 

Solution:  1 nIn the example, the estimate λ̂ = X = Xi = 24.9, with n = 23. n 1 

The X1, . . . , Xn are assumed to be i.i.d. (independent and identically 
distributed) P oisson(λ0) random variables with 

E[Xi] = λ0 and V ar[Xi] = λ0 

By the Central Limit Theorem 
√ (X−λ0) n→∞
n √ −−−−→ N(0, 1). 

λ0 

The approximate sampling distribution of λ̂ is thus a Normal distri­
bution centered λ0 with  

λ̂standard deviation equal to λ0/n ≈ = 24.9/23 = 1.040485. n 

For the probability computations: 

P (|λ0 − λ̂| > δ) = P (|λ0 − X| > δ)√ 
n|λ0 − X| √ δ 

= P ( √ > n√ )
λ0 λ0√ δ≈ P (|N(0, 1)| > n√ )

λ̂√ 
√ 23 = P (|N(0, 1)| > δ)
24.9 

= 2 × (1 − Φ( 23/24.9 × δ)) 

Using R and the function pnorm we can compute the desired values: 

> 2 * 1-pnorm( sqrt(23/24.9) * c(.5,1.,1.5,2.,2.5)) 
[1] 1.315420 1.168253 1.074703 1.027292 1.008137 

5
 

√ √

√



5. Problem 8.10.13. 

In Example D of Secton 8.4, the method of moments estimate was 
found to be α̂ = 3X. In this example, consider the sampling distribu­
tion of α̂.
 

(a). Show that E(α̂) = α, that is, that the estimate is unbiased.
 

(b). Show that V ar(α̂) = (3 − α2)/n.
 

(c). Use the central limit theorem to deduce a normal approximation
 
to the sampling distribution of α̂.
 

According to this approximation, if n = 25 and α = 0, what is the
 
P (|α̂| > .5).
 

Solution 

The sample of values X1, . . . , Xn giving X are i.i.d. with density func­
tion 

f(x | α) = 1+αx , for −1 ≤ x ≤ +1,2 

with parameter α : −1 ≤ α ≤ 1. (The values are such that xi = cos(θi), 
where θi is the angle at which electrons are emitted in muon decay.) 

(a). Since the Xi are i.i.d. a 1 
x × (1+αxE[X] = E[Xi] = −1 2 )dx = α/3
 

It follows that
 

E[α̂] = E[3X] = 3E[X] = 3(α/3) = α
 

(b). Since the Xi are i.i.d.
 

V ar[X] = V ar[Xi]/n = ( 1 ) × (E[X2] − E[X]2)
n 
2 × (1+αx = ( 1 ) × ([ 

a 1 
x )dx] − (α/3)2)n −1 2a 1 2x= (n 

1 ) × ([ −1 dx] − (α/3)2)2 
= ( 1 ) × ([1/3] − (α/3)2)n 

3 − α2 

= 
9n 

It follows that:
 
3 − α2
 

V ar[α̂] = V ar[3X] = 9 × V ar[X] = . 
n 

(c) By the central limit theorm, for true parameter α = α0, it follows 
that 

n→∞ 3 − α2 
0α̂ −−−−−→ N(α0, ) 

n 
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