
18.443 Problem Set 4 Spring 2015
 
Statistics for Applications
 

Due Date: 3/13/2015
 
  prior  to  3:00pm 
 

Problems from John A. Rice, Third Edition. [Chapter.Section.P roblem] 

1. Problem 8.10.5 

X is a descrete random varialbe with 

P (X = 1) = θ and P (X = 2) = 1 − θ. 

Three independent ovservations of X are made: 

x1 = 1, x2 = 2, x = 2. 

(a). Find the method of moments estimate of θ 

µ1 = E[X] = 1 × (θ) + 2 × (1 − θ) = 2 − θ. 

Setting µ̂1 = X = µ1 and solving for θ gives
 
ˆ
θ = 2 − µ̂1 = 2 − X = 2 − 5/3 = 1/3.
 

(b). What is the likelihood function?
 

Lik(θ) = f(x1 | θ) × f(x2 | θ) × f(x3 | θ)
 
= θ × (1 − θ) × (1 − θ) = θ(1 − θ)2 .
 

(c).The mle for θ is found by solving
 
∂ ∂0 = [log (Lik(θ))] = [ln(θ) + 2 ln(1 − θ)]∂θ ∂θ 

1 2= −θ 1−θ 

=⇒ θ̂ = 1/3. 

(d). The uniform distribution has density 

π(θ) = 1, 0 < θ < 1 

The posterior distribution has density 

π(θ | x) ∝ π(θ) × Lik(θ) 
= θ(1 − θ)2 × 1 

By inspection, the posterior density must be that of a Beta(a, b) dis­
tribution with 

a = 2 and b = 3. 
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2. Problem 8.10.7 

Suppose that X follows a geometric distribution 

P (X = x | p) = p(1 − p)x−1, x = 1, 2 . . .
 

Assume an i.i.d. sample of size n.
 

(a). Find the method of moments estimate of p.
 

The first moment of X is
  ∞ µ1 = kp(1 − p)k−1 = 1/pk=1 

(See Appendex A, page A1.)  
Solving µ̂1 = X = 1 n Xi = µ1 gives n i=1
 

p̂ = 1 .
 
X 

(b). Find the mle of p. The mle of a sample x1, . . . , xn minimizes 
n Xi)−nLik(p) =

 
i=1[p(1 − p)xi−1] = pn(1 − p)( 

( n
i=1  nThe mle is the same as the mle for a sample of size ( i=1 xi) from a 

Bernoulli(p) distribution with n successes: 
n p̂ = ( n = 1/X (same as the method-of-moments 

i=1 xi−n+n 

estimate) 

(c) The asympotic variance of the mle is 

1 p2(1−p)V ar(ˆ =pMLE ) ≈ nI(p) n 

where 

E[−∂2log[P (x|p)]I(p) = ]
∂p2 

E[− ∂
2 

= 
∂p2 [ln(p) + (x − 1) ln(1 − p)] 

(x−1)= E[−[− 
p
1 
2 − 

(1−p)2 ]] 
1 E[X]−1 = 2 + 
p (1−p)2 

1 (1−p)= 2 + 
p p(1−p)2
 

1 1
 = 
p2 + p(1−p)
 

1
 = 
p2(1−p) 

(d). Let p have a uniform distribution on [0, 1]. The posterior distri­
bution of p has density
 

π(p | x1, . . . , xn) ∝ Lik(p) × π(θ)
(n 
= pn(1 − p)( i=1 xi)−n × 1 

a= p
∗−1(1 − p)b

∗−1
 

which can be recognized as a Beta(a ∗, b∗) distribution with
 

2
 



 

 
 

 

n∗ a = (n + 1) and b∗ = ( i=1 xi) − n + 1 

The mean of the posterior distribution is the mean of the Beta(a ∗, b∗) 
distribution which is 

∗ a 
E[p | x1, . . . , xn] = 

a ∗ + b∗ 
n + 1 

= n n + 1 + ( i=1 xi) − n + 1 
n + 1 

= n 
i=1 xi + 2
 

(Note: the book solution is only for n = 1 and x1 = k)
 

3. Problem 8.10.32 

The R code in P roblem 8 10 32.html provides numerical solutions to 
(a), (b), and (c). 

(a). Reasonable guesses for the mean µ and variance σ2 are the mle 
for µ and the unbaised sample variance for σ2 .
 

µ̂ = X.
 
1 nσ̂2 = (Xi − X)2 

n−1 i=1

(Alternates are reasonable if suggested, e.g., the mle for the variance.)
 

(b). Confidence intervals for µ :
 

Let CI.level (×100%) be the confidence level of the interval.
 

Set α = 1 − CI.level and define t ∗ = t(α/2, df = (n − 1)), the upper
 
α/2 quantile of a t distribution with n − 1 degrees of freedom. Then
 
the confidence interval for µ is
 

√ √√ √ 
{µ : µ̂ − t ∗ s2/ n < µ < µ̂+ t ∗ s2/ n}. 

Confidence intervals for σ2 : 

Let CI.level (×100%) be the confidence level of the interval. 

Set α = 1 − CI.level and define χ∗ = χ(α/2, df = (n − 1)), the Upper 
upper α/2 quantile of a chi − square random variable with (n − 1) 
degrees of freedom, and χ∗ = χ(1 − α/2, df = (n − 1)), the lower Lower 
α/2 quantile of the same distribution. The confidence interval is: 

n−1 n−1{σ2 : σ̂2 × < σ2 < σ̂2 × }χUpper χLower 

(c). To compute confidence intervals for σ rather than σ2 , just take 
the square roots of the corresponding confidence intervals for sigma2 . 
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(d). To halve the confidence interval for µ, the sample size should 
increase about 4 times. The standard deviation of the sample mean is √ 
σ/ n so this is halved when the sample size is increased by a factor 
of 4. This argument does not account for the fact that the critical 
value of the t distribution of a given α/2 level is smaller the higher 
the degrees of freedom. So, the factor of 4 is an upper bound on the 
the sample size increase required. Also, the length of the confidence 
interval for µ is random. The previous comments apply on average, 
but in any sample, the confidence interval will have random length 
and could be arbitrarily large, albeit with very small probability. 

4. Problem 8.10.63 

Suppose that 100 items are sampled from a manufacturing process 
and 3 are found to be defective. Let X = 3 be the outcome of a 
Binomial(n = 100, θ) random variable. 

The likelihood of the data is   
Lik(θ) =

100 
θ3(1 − θ)97 

3

Consider a prior distribution for θ which is Beta(a, b), (with a > 0, b > 
0). 

1π(θ) = θa−1(1 − θ)b−1 .β(a,b) 

The posterior distribution has density: 

π(θ | x) ∝ Lik(θ) × π(θ)  
1 = [

100 
]θ3(1 − θ)97] × [ θa−1(1 − θ)b−1]β(a,b)3

θa+3−1(1 − θ)97+b−1∝ 

Which normalizes to a Beta(a ∗, b∗) distribution where
 
∗
 a = a + 3, and b∗ = b + 97. 

The mean of the posterior distribution is 
∗E[θ | X] = a ∗/(a + b∗). 

For a = b = 1 we have E[θ | X] = 4/102 and 

For a.5, and b = 5 we have E[θ | X] = 3.5/105.5. 

The R code in P roblem 8 10 63.html plots the prior/posterior densi­
ties and computes the posterior means. 
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