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I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
X

x :p(x)>0

xp(x).

I Also,
E [g(X )] =

X
x :p(x)>0

g(x)p(x).

Recall definitions for expectation 

I Recall: a random variable X is a function from the state space 
to the real numbers. 
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I The variance of X , denoted Var(X ), is defined by
Var(X ) = E [(X − µ)2].

I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

P
x :p(x)>0 g(x)p(x), we find that

Var[X ] =
X

x :p(x)>0

(x − µ)2p(x).

I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

Defining variance 

I Let X be a random variable with mean µ. 

10



I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

P
x :p(x)>0 g(x)p(x), we find that

Var[X ] =
X

x :p(x)>0

(x − µ)2p(x).

I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

Defining variance 

I Let X be a random variable with mean µ. 

I The variance of X , denoted Var(X ), is defined by 
Var(X ) = E [(X − µ)2]. 

11



I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

Defining variance 

I Let X be a random variable with mean µ. 

I The variance of X , denoted Var(X ), is defined by 
Var(X ) = E [(X − µ)2]. 

I Taking g(x) = (x − µ)2 , and recalling that P 
E [g(X )] = x :p(x)>0 g(x)p(x), we find that X 

Var[X ] = (x − µ)2 p(x). 
x :p(x)>0 

12



Defining variance 

I Let X be a random variable with mean µ. 

I The variance of X , denoted Var(X ), is defined by 
Var(X ) = E [(X − µ)2]. 

I Taking g(x) = (x − µ)2 , and recalling that P 
E [g(X )] = x :p(x)>0 g(x)p(x), we find that X 

Var[X ] = (x − µ)2 p(x). 
x :p(x)>0 

I Variance is one way to measure the amount a random variable 
“varies” from its mean over successive trials. 

13



I We introduced above the formula Var(X ) = E [(X − µ)2].

I This can be written Var[X ] = E [X 2 − 2Xµ+ µ2].

I By additivity of expectation, this is the same as
E [X 2]− 2µE [X ] + µ2 = E [X 2]− µ2.

I This gives us our very important alternative formula:
Var[X ] = E [X 2]− (E [X ])2.

I Seven words to remember: “expectation of square minus
square of expectation.”

I Original formula gives intuitive idea of what variance is
(expected square of difference from mean). But we will often
use this alternative formula when we have to actually compute
the variance.

Very important alternatative formula 

I Let X be a random variable with mean µ. 
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I Var[X ] = E [X 2]− E [X ]2 =
1
61

2 + 1
62

2 + 1
63

2 + 1
64

2 + 1
65

2 + 1
66

2 − (7/2)2 = 91
6 −

49
4 = 35

12 .

I Let Y be number of heads in two fair coin tosses. What is
Var[Y ]?

I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and
P{Y = 2} = 1/4.

I Then Var[Y ] = E [Y 2]− E [Y ]2 = 1
40

2 + 1
21

2 + 1
42

2 − 12 = 1
2 .

Variance examples 

I If X is number on a standard die roll, what is Var[X ]? 

23



I Let Y be number of heads in two fair coin tosses. What is
Var[Y ]?

I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and
P{Y = 2} = 1/4.

I Then Var[Y ] = E [Y 2]− E [Y ]2 = 1
40

2 + 1
21

2 + 1
42

2 − 12 = 1
2 .

Variance examples 

I If X is number on a standard die roll, what is Var[X ]? 

I Var[X ] = E [X 2] − E [X ]2 = 
1 1 1 1 1 1 91 − 49 35 12 + 22 + 32 + 42 + 52 + 62 − (7/2)2 = = 6 6 6 6 6 6 6 4 12 . 

24



I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and
P{Y = 2} = 1/4.

I Then Var[Y ] = E [Y 2]− E [Y ]2 = 1
40

2 + 1
21

2 + 1
42

2 − 12 = 1
2 .

Variance examples 

I If X is number on a standard die roll, what is Var[X ]? 

I Var[X ] = E [X 2] − E [X ]2 = 
1 1 1 1 1 1 91 − 49 35 12 + 22 + 32 + 42 + 52 + 62 − (7/2)2 = = 6 6 6 6 6 6 6 4 12 . 

I Let Y be number of heads in two fair coin tosses. What is 
Var[Y ]? 

25



I Then Var[Y ] = E [Y 2]− E [Y ]2 = 1
40

2 + 1
21

2 + 1
42

2 − 12 = 1
2 .

Variance examples 

I If X is number on a standard die roll, what is Var[X ]? 

I Var[X ] = E [X 2] − E [X ]2 = 
1 1 1 1 1 1 91 − 49 35 12 + 22 + 32 + 42 + 52 + 62 − (7/2)2 = = 6 6 6 6 6 6 6 4 12 . 

I Let Y be number of heads in two fair coin tosses. What is 
Var[Y ]? 

I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and 
P{Y = 2} = 1/4. 

26



Variance examples 

I If X is number on a standard die roll, what is Var[X ]? 

I Var[X ] = E [X 2] − E [X ]2 = 
1 1 1 1 1 1 91 − 49 35 12 + 22 + 32 + 42 + 52 + 62 − (7/2)2 = = 6 6 6 6 6 6 6 4 12 . 

I Let Y be number of heads in two fair coin tosses. What is 
Var[Y ]? 

I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and 
P{Y = 2} = 1/4. 

1 1 1 1 I Then Var[Y ] = E [Y 2] − E [Y ]2 = 02 + 12 + 22 − 12 = 2 . 4 2 4 

27



I Let X be the amount you win. What’s the expectation of X?

I How about the variance?

I Variance is more sensitive than expectation to rare “outlier”
events.

I At a particular party, there are four five-foot-tall people, five
six-foot-tall people, and one seven-foot-tall person. You pick
one of these people uniformly at random. What is the
expected height of the person you pick?

I E [X ] = .4 · 5 + .5 · 6 + .1 · 7 = 5.7

I Variance?

I .4 · 25 + .5 · 36 + .1 · 49− (5.7)2 = 32.9− 32.49 = .41,

More variance examples 

I You buy a lottery ticket that gives you a one in a million 
chance to win a million dollars. 
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I Yes.

I We showed earlier that E [aX ] = aE [X ]. We claim that
Var[aX ] = a2Var[X ].

I Proof: Var[aX ] = E [a2X 2]− E [aX ]2 = a2E [X 2]− a2E [X ]2 =
a2Var[X ].

Identity 

I If Y = X + b, where b is constant, then does it follow that 
Var[Y ] = Var[X ]? 
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I Satisfies identity SD[aX ] = aSD[X ].

I Uses the same units as X itself.

I If we switch from feet to inches in our “height of randomly
chosen person” example, then X , E [X ], and SD[X ] each get
multiplied by 12, but Var[X ] gets multiplied by 144.

Standard deviation 

p 
I Write SD[X ] = Var[X ]. 
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I Let’s compute E [A] and Var[A].

I To start with, how many five card hands total?

I Answer:
�52
5

�
.

I How many such hands have k aces?

I Answer:
�4
k

�� 48
5−k

�
.

I So P{A = k} = (4k)(
48

5−k)
(525 )

.

I So E [A] =
P4

k=0 kP{A = k},
I and Var[A] =

P4
k=0 k

2P{A = k} − E [A]2.

Number of aces 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 
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I So P{A = k} = (4k)(
48

5−k)
(525 )

.

I So E [A] =
P4

k=0 kP{A = k},
I and Var[A] =

P4
k=0 k

2P{A = k} − E [A]2.

Number of aces 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Let’s compute E [A] and Var[A]. 

I To start with, how many five card hands total? �52� 
I Answer: 5 . 

I How many such hands have k aces? �4�� 48 � 
I Answer: . k 5−k 

53



I So E [A] =
P4

k=0 kP{A = k},
I and Var[A] =

P4
k=0 k

2P{A = k} − E [A]2.

Number of aces 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Let’s compute E [A] and Var[A]. 

I To start with, how many five card hands total? �52� 
I Answer: 5 . 

I How many such hands have k aces? �4�� 48 � 
I Answer: . k 5−k 

(4)( 48 

I So P{A = k} = k 

(52
5−k) . 
) 5 
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I and Var[A] =
P4

k=0 k
2P{A = k} − E [A]2.

Number of aces 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Let’s compute E [A] and Var[A]. 

I To start with, how many five card hands total? �52� 
I Answer: . 5 

I How many such hands have k aces? �4�� 48 � 
I Answer: . k 5−k 

(4)( 48 

I So P{A = k} = k 

(52
5−k) . 
) 

I So E [A] = 
P4 kP 

5 

{A = k}, k=0 
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Number of aces 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Let’s compute E [A] and Var[A]. 

I To start with, how many five card hands total? �52� 
I Answer: 5 . 

I How many such hands have k aces? �4�� 48 � 
I Answer: . k 5−k 

(4)( 48 ) 
I So P{A = k} = k 

(52
5−k . 
) 

I So E [A] = 
P4 kP 

5 

{A = k}, k=0 

I and Var[A] = 
P4 k2P{A = k} − E [A]2 . k=0 
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I Choose five cards in order, and let Ai be 1 if the ith card
chosen is an ace and zero otherwise.

I Then A =
P5

i=1 Ai . And E [A] =
P5

i=1 E [Ai ] = 5/13.

I Now A2 = (A1 + A2 + . . .+ A5)
2 can be expanded into 25

terms: A2 =
P5

i=1

P5
j=1 AiAj .

I So E [A2] =
P5

i=1

P5
j=1 E [AiAj ].

I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 
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I Then A =
P5

i=1 Ai . And E [A] =
P5

i=1 E [Ai ] = 5/13.

I Now A2 = (A1 + A2 + . . .+ A5)
2 can be expanded into 25

terms: A2 =
P5

i=1

P5
j=1 AiAj .

I So E [A2] =
P5

i=1

P5
j=1 E [AiAj ].

I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. 
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I Now A2 = (A1 + A2 + . . .+ A5)
2 can be expanded into 25

terms: A2 =
P5

i=1

P5
j=1 AiAj .

I So E [A2] =
P5

i=1

P5
j=1 E [AiAj ].

I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 
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I So E [A2] =
P5

i=1

P5
j=1 E [AiAj ].

I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 

I Now A2 = (A1 + A2 + . . . + A5)
2 can be expanded into 25 P5 P5 terms: A2 = Ai Aj . i=1 j=1 
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I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 

I Now A2 = (A1 + A2 + . . . + A5)
2 can be expanded into 25 P5 P5 terms: A2 = Ai Aj . i=1 j=1 P5 P5 I So E [A2] = E [Ai Aj ]. i=1 j=1 

61



I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 

I Now A2 = (A1 + A2 + . . . + A5)
2 can be expanded into 25 P5 P5 terms: A2 = Ai Aj . i=1 j=1 P5 P5 I So E [A2] = E [Ai Aj ]. i=1 j=1 

I Five terms of form E [Ai Aj ] with i = j five with i 6= j . First 
five contribute 1/13 each. How about other twenty? 
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I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 

I Now A2 = (A1 + A2 + . . . + A5)
2 can be expanded into 25 P5 P5 terms: A2 = Ai Aj . i=1 j=1 P5 P5 I So E [A2] = E [Ai Aj ]. i=1 j=1 

I Five terms of form E [Ai Aj ] with i = j five with i 6= j . First 
five contribute 1/13 each. How about other twenty? 

I E [Ai Aj ] = (1/13)(3/51) = (1/13)(1/17). So 
5 20 105 E [A2] = + = 13 13×17 13×17 . 
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Number of aces revisited 

I Choose five cards from a standard deck of 52 cards. Let A be 
the number of aces you see. 

I Choose five cards in order, and let Ai be 1 if the ith card 
chosen is an ace and zero otherwise. P5 P5 I Then A = Ai . And E [A] = E [Ai ] = 5/13. i=1 i=1 

I Now A2 = (A1 + A2 + . . . + A5)
2 can be expanded into 25 P5 P5 terms: A2 = Ai Aj . i=1 j=1 P5 P5 I So E [A2] = E [Ai Aj ]. i=1 j=1 

I Five terms of form E [Ai Aj ] with i = j five with i 6= j . First 
five contribute 1/13 each. How about other twenty? 

I E [Ai Aj ] = (1/13)(3/51) = (1/13)(1/17). So 
5 20 105 E [A2] = + = 13 13×17 13×17 . 

105 25 I Var[A] = E [A2] − E [A]2 = − 13×17 13×13 . 64



I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2]− 1.

I But how do we compute E [X 2]?

I Decomposition trick: write variable as sum of simple variables.

I Let Xi be one if ith person gets own hat and zero otherwise.
Then X = X1 + X2 + . . .+ Xn =

Pn
i=1 Xi .

I We want to compute E [(X1 + X2 + . . .+ Xn)
2].

I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 
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I But how do we compute E [X 2]?

I Decomposition trick: write variable as sum of simple variables.

I Let Xi be one if ith person gets own hat and zero otherwise.
Then X = X1 + X2 + . . .+ Xn =

Pn
i=1 Xi .

I We want to compute E [(X1 + X2 + . . .+ Xn)
2].

I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 
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I Decomposition trick: write variable as sum of simple variables.

I Let Xi be one if ith person gets own hat and zero otherwise.
Then X = X1 + X2 + . . .+ Xn =

Pn
i=1 Xi .

I We want to compute E [(X1 + X2 + . . .+ Xn)
2].

I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 
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I Let Xi be one if ith person gets own hat and zero otherwise.
Then X = X1 + X2 + . . .+ Xn =

Pn
i=1 Xi .

I We want to compute E [(X1 + X2 + . . .+ Xn)
2].

I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 

I Decomposition trick: write variable as sum of simple variables. 
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I We want to compute E [(X1 + X2 + . . .+ Xn)
2].

I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 

I Decomposition trick: write variable as sum of simple variables. 

I Let Xi be one if ith person gets own hat and zero otherwise. P n Then X = X1 + X2 + . . . + Xn = i=1 Xi . 
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I Expand this out and using linearity of expectation:

E [
nX

i=1

Xi

nX
j=1

Xj ] =
nX

i=1

nX
j=1

E [XiXj ] = n·1
n
+n(n−1) 1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 

I Decomposition trick: write variable as sum of simple variables. 

I Let Xi be one if ith person gets own hat and zero otherwise. P n Then X = = X1 + X2 + . . . + Xn i=1 Xi . 

I We want to compute E [(X1 + X2 + . . . + Xn)
2]. 
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I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.

Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 

I Decomposition trick: write variable as sum of simple variables. 

I Let Xi be one if ith person gets own hat and zero otherwise. P n Then X = X1 + X2 + . . . + Xn = i=1 Xi . 

I We want to compute E [(X1 + X2 + . . . + Xn)
2]. 

I Expand this out and using linearity of expectation: 

n n n n X X XX 1 1 
E [ Xi Xj ] = E [Xi Xj ] = n· +n(n−1) = 2. 

n n(n − 1) 
i=1 j=1 i=1 j=1 
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Hat problem variance 

I In the n-hat shuffle problem, let X be the number of people 
who get their own hat. What is Var[X ]? 

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2] − 1. 

I But how do we compute E [X 2]? 

I Decomposition trick: write variable as sum of simple variables. 

I Let Xi be one if ith person gets own hat and zero otherwise. P n Then X = X1 + X2 + . . . + Xn = i=1 Xi . 

I We want to compute E [(X1 + X2 + . . . + Xn)
2]. 

I Expand this out and using linearity of expectation: 

n n n n X X XX 1 1 
E [ Xi Xj ] = E [Xi Xj ] = n· +n(n−1) = 2. 

n n(n − 1) 
i=1 j=1 i=1 j=1 

I So Var[X ] = E [X 2] − (E [X ])2 = 2 − 1 = 1. 
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