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I Overcount by a fixed factor.

I If you have n elements you wish to divide into r distinct piles
of sizes n1, n2 . . . nr , how many ways to do that?

I Answer
� n
n1,n2,...,nr

�
:= n!

n1!n2!...nr !
.

I How many sequences a1, . . . , ak of non-negative integers
satisfy a1 + a2 + . . .+ ak = n?

I Answer:
�n+k−1

n

�
. Represent partition by k − 1 bars and n

stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗.

Selected counting tricks 

I Break “choosing one of the items to be counted” into a 
sequence of stages so that one always has the same number of 
choices to make at each stage. Then the total count becomes 
a product of number of choices available at each stage. 
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I Answer:
�n+k−1

n

�
. Represent partition by k − 1 bars and n

stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗.

Selected counting tricks 

I Break “choosing one of the items to be counted” into a 
sequence of stages so that one always has the same number of 
choices to make at each stage. Then the total count becomes 
a product of number of choices available at each stage. 
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of sizes n1, n2 . . . nr , how many ways to do that? � � n n! I Answer := n1,n2,...,nr n1!n2!...nr ! 
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I How many sequences a1, . . . , ak of non-negative integers 
satisfy a1 + a2 + . . . + ak = n? 
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Selected counting tricks 

I Break “choosing one of the items to be counted” into a 
sequence of stages so that one always has the same number of 
choices to make at each stage. Then the total count becomes 
a product of number of choices available at each stage. 

I Overcount by a fixed factor. 

I If you have n elements you wish to divide into r distinct piles 
of sizes n1, n2 . . . nr , how many ways to do that? � � n n! I Answer := n1,n2,...,nr n1!n2!...nr ! 

. 

I How many sequences a1, . . . , ak of non-negative integers 
satisfy a1 + a2 + . . . + ak = n? � � n+k−1 I Answer: . Represent partition by k − 1 bars and n n 
stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗. 
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I P(A) ∈ [0, 1] for all (measurable) A ⊂ S .

I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞i=1Ei ) =

P∞
i=1 P(Ei ) if Ei ∩ Ej = ∅

for each pair i and j .

Axioms of probability 

I Have a set S called sample space. 
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Axioms of probability 

I Have a set S called sample space. 

I P(A) ∈ [0, 1] for all (measurable) A ⊂ S . 

I P(S) = 1. 

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅. P∞ I Countable additivity: P(∪∞ Ei ) = P(Ei ) if Ei ∩ Ej = ∅ i=1 i=1 
for each pair i and j . 

14



I A ⊂ B implies P(A) ≤ P(B)

I P(A ∪ B) = P(A) + P(B)− P(AB)

I P(AB) ≤ P(A)

Consequences of axioms 

I P(Ac ) = 1 − P(A) 
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I P(AB) ≤ P(A)

Consequences of axioms 

I P(Ac ) = 1 − P(A) 

I A ⊂ B implies P(A) ≤ P(B) 

I P(A ∪ B) = P(A) + P(B) − P(AB) 
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Consequences of axioms 

I P(Ac ) = 1 − P(A) 

I A ⊂ B implies P(A) ≤ P(B) 

I P(A ∪ B) = P(A) + P(B) − P(AB) 

I P(AB) ≤ P(A) 
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I Also, P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )− P(EF )− P(EG )− P(FG ) + P(EFG ).

I More generally,

P(∪n
i=1Ei ) =

nX
i=1

P(Ei )−
X
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
X

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

= + . . .+ (−1)n+1P(E1E2 . . .En).

I The notation
P

i1<i2<...<ir
means a sum over all of the

�n
r

�
subsets of size r of the set {1, 2, . . . , n}.

Inclusion-exclusion identity 

I Observe P(A ∪ B) = P(A) + P(B) − P(AB). 
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I Inclusion-exclusion. Let Ei be the event that ith person gets
own hat.

I What is P(Ei1Ei2 . . .Eir )?

I Answer: (n−r)!
n! .

I There are
�n
r

�
terms like that in the inclusion exclusion sum.

What is
�n
r

� (n−r)!
n! ?

I Answer: 1
r ! .

I P(∪n
i=1Ei ) = 1− 1

2! +
1
3! −

1
4! + . . .± 1

n!

I 1−P(∪n
i=1Ei ) = 1−1+ 1

2! −
1
3! +

1
4! − . . .± 1

n! ≈ 1/e ≈ .36788

Famous hat problem 

I n people toss hats into a bin, randomly shuffle, return one hat 
to each person. Find probability nobody gets own hat. 
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Famous hat problem 

I n people toss hats into a bin, randomly shuffle, return one hat 
to each person. Find probability nobody gets own hat. 

I Inclusion-exclusion. Let Ei be the event that ith person gets 
own hat. 
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Famous hat problem 

I n people toss hats into a bin, randomly shuffle, return one hat 
to each person. Find probability nobody gets own hat. 

I Inclusion-exclusion. Let Ei be the event that ith person gets 
own hat. 

I What is P(Ei1 Ei2 . . . Eir )? 
(n−r)! I Answer: . �n!� n I There are terms like that in the inclusion exclusion sum. r � � n (n−r )! What is ? r n! 
1 I Answer: r ! . 

1 − 1 1 I P(∪n Ei ) = 1 − 1 + + . . . ± i=1 2! 3! 4! n! 

− 1 1 I 1 − P(∪n Ei ) = 1 − 1+ 1 + − . . . ± 1 ≈ 1/e ≈ .36788 i=1 2! 3! 4! n! 
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I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Nice fact: P(E1E2E3 . . .En) =
P(E1)P(E2|E1)P(E3|E1E2) . . .P(En|E1 . . .En−1)

I Useful when we think about multi-step experiments.

I For example, let Ei be event ith person gets own hat in the
n-hat shuffle problem.

Conditional probability 

I Definition: P(E |F ) = P(EF )/P(F ). 
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I In words: want to know the probability of E . There are two
scenarios F and F c . If I know the probabilities of the two
scenarios and the probability of E conditioned on each
scenario, I can work out the probability of E .

Dividing probability into two cases 

I 

P(E ) = P(EF ) + P(EF c ) 

= P(E |F )P(F ) + P(E |F c )P(F c ) 
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P(E ) = P(EF ) + P(EF c ) 

= P(E |F )P(F ) + P(E |F c )P(F c ) 

I In words: want to know the probability of E . There are two 
scenarios F and F c . If I know the probabilities of the two 
scenarios and the probability of E conditioned on each 
scenario, I can work out the probability of E . 

37



I Follows from definition of conditional probability:
P(AB) = P(B)P(A|B) = P(A)P(B |A).

I Tells how to update estimate of probability of A when new
evidence restricts your sample space to B.

I So P(A|B) is P(B|A)
P(B) times P(A).

I Ratio P(B|A)
P(B) determines “how compelling new evidence is”.

Bayes’ theorem 

I Bayes’ theorem/law/rule states the following: 
P(B|A)P(A) P(A|B) = . P(B) 
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Bayes’ theorem 

I Bayes’ theorem/law/rule states the following: 
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I The probability measure P(·|F ) is related to P(·).
I To get former from latter, we set probabilities of elements

outside of F to zero and multiply probabilities of events inside
of F by 1/P(F ).

I P(·) is the prior probability measure and P(·|F ) is the
posterior measure (revised after discovering that F occurs).

P(·|F ) is a probability measure 

I We can check the probability axioms: 0 ≤ P(E |F ) ≤ 1, P 
P(S |F ) = 1, and P(∪Ei ) = P(Ei |F ), if i ranges over a 
countable set and the Ei are disjoint. 
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P(·|F ) is a probability measure 

I We can check the probability axioms: 0 ≤ P(E |F ) ≤ 1, P 
P(S |F ) = 1, and P(∪Ei ) = P(Ei |F ), if i ranges over a 
countable set and the Ei are disjoint. 

I The probability measure P(·|F ) is related to P(·). 
I To get former from latter, we set probabilities of elements 

outside of F to zero and multiply probabilities of events inside 
of F by 1/P(F ). 

I P(·) is the prior probability measure and P(·|F ) is the 
posterior measure (revised after discovering that F occurs). 
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I Equivalent statement: P(E |F ) = P(E ). Also equivalent:
P(F |E ) = P(F ).

Independence 

I Say E and F are independent if P(EF ) = P(E )P(F ). 
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Independence 

I Say E and F are independent if P(EF ) = P(E )P(F ). 

I Equivalent statement: P(E |F ) = P(E ). Also equivalent: 
P(F |E ) = P(F ). 
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I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 
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Independence of multiple events 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

I In other words, the product rule works. 

I Independence implies P(E1E2E3|E4E5E6) = 
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6) = P(E1E2E3), and other similar P(E4)P(E5)P(E6) 
statements. 

I Does pairwise independence imply independence? 

I No. Consider these three events: first coin heads, second coin 
heads, odd number heads. Pairwise independent, not 
independent. 
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Counting tricks and basic principles of probability 

Discrete random variables 
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I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
if it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I Write F (a) = P{X ≤ a} =
P

x≤a p(x). Call F the
cumulative distribution function.

Random variables 

I A random variable X is a function from the state space to the 
real numbers. 
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I Say X is a discrete random variable if (with probability one)
if it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
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I Write F (a) = P{X ≤ a} =
P

x≤a p(x). Call F the
cumulative distribution function.

Random variables 

I A random variable X is a function from the state space to the 
real numbers. 

I Can interpret X as a quantity whose value depends on the 
outcome of an experiment. 

I Say X is a discrete random variable if (with probability one) 
if it takes one of a countable set of values. 

I For each a in this countable set, write p(a) := P{X = a}. 
Call p the probability mass function. 
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Random variables 

I A random variable X is a function from the state space to the 
real numbers. 

I Can interpret X as a quantity whose value depends on the 
outcome of an experiment. 

I Say X is a discrete random variable if (with probability one) 
if it takes one of a countable set of values. 

I For each a in this countable set, write p(a) := P{X = a}. 
Call p the probability mass function. P 

I Write F (a) = P{X ≤ a} = p(x). Call F the x≤a 
cumulative distribution function. 
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I The value of 1E (either 1 or 0) indicates whether the event
has occurred.

I If E1,E2, . . . ,Ek are events then X =
Pk

i=1 1Ei
is the number

of these events that occur.

I Example: in n-hat shuffle problem, let Ei be the event ith
person gets own hat.

I Then
Pn

i=1 1Ei
is total number of people who get own hats.

Indicators 

I Given any event E , can define an indicator random variable, 
i.e., let X be random variable equal to 1 on the event E and 0 
otherwise. Write this as X = 1E . 
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I Then
Pn

i=1 1Ei
is total number of people who get own hats.

Indicators 

I Given any event E , can define an indicator random variable, 
i.e., let X be random variable equal to 1 on the event E and 0 
otherwise. Write this as X = 1E . 

I The value of 1E (either 1 or 0) indicates whether the event 
has occurred. Pk I If E1, E2, . . . , Ek are events then X = 1Ei is the number i=1 
of these events that occur. 

I Example: in n-hat shuffle problem, let Ei be the event ith 
person gets own hat. 
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Indicators 

I Given any event E , can define an indicator random variable, 
i.e., let X be random variable equal to 1 on the event E and 0 
otherwise. Write this as X = 1E . 

I The value of 1E (either 1 or 0) indicates whether the event 
has occurred. Pk I If E1, E2, . . . , Ek are events then X = is the number i=1 1Ei 

of these events that occur. 

I Example: in n-hat shuffle problem, let Ei be the event ith 
person gets own hat. Pn I Then is total number of people who get own hats. i=1 1Ei 
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I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
X

x :p(x)>0

xp(x).

I Represents weighted average of possible values X can take,
each value being weighted by its probability.

Expectation of a discrete random variable 

I Say X is a discrete random variable if (with probability one) 
it takes one of a countable set of values. 
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I The expectation of X , written E [X ], is defined by

E [X ] =
X

x :p(x)>0

xp(x).

I Represents weighted average of possible values X can take,
each value being weighted by its probability.
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I Say X is a discrete random variable if (with probability one) 
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Call p the probability mass function. 
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I Represents weighted average of possible values X can take,
each value being weighted by its probability.

Expectation of a discrete random variable 

I Say X is a discrete random variable if (with probability one) 
it takes one of a countable set of values. 

I For each a in this countable set, write p(a) := P{X = a}. 
Call p the probability mass function. 

I The expectation of X , written E [X ], is defined by X 
E [X ] = xp(x). 

x :p(x)>0 
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Expectation of a discrete random variable 

I Say X is a discrete random variable if (with probability one) 
it takes one of a countable set of values. 

I For each a in this countable set, write p(a) := P{X = a}. 
Call p the probability mass function. 

I The expectation of X , written E [X ], is defined by X 
E [X ] = xp(x). 

x :p(x)>0 

I Represents weighted average of possible values X can take, 
each value being weighted by its probability. 
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I Agrees with the SUM OVER POSSIBLE X VALUES
definition:

E [X ] =
X

x :p(x)>0

xp(x).

Expectation when state space is countable 

I If the state space S is countable, we can give SUM OVER 
STATE SPACE definition of expectation: X 

E [X ] = P{s}X (s). 
s∈S 
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Expectation when state space is countable 

I If the state space S is countable, we can give SUM OVER 
STATE SPACE definition of expectation: X 

E [X ] = P{s}X (s). 
s∈S 

I Agrees with the SUM OVER POSSIBLE X VALUES 
definition: X 

E [X ] = xp(x). 
x :p(x)>0 

71



I How can we compute E [g(X )]?

I Answer:
E [g(X )] =

X
x :p(x)>0

g(x)p(x).

Expectation of a function of a random variable 

I If X is a random variable and g is a function from the real 
numbers to the real numbers then g(X ) is also a random 
variable. 

72



I Answer:
E [g(X )] =

X
x :p(x)>0

g(x)p(x).

Expectation of a function of a random variable 

I If X is a random variable and g is a function from the real 
numbers to the real numbers then g(X ) is also a random 
variable. 

I How can we compute E [g(X )]? 
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Expectation of a function of a random variable 

I If X is a random variable and g is a function from the real 
numbers to the real numbers then g(X ) is also a random 
variable. 

I How can we compute E [g(X )]? 

I Answer: X 
E [g(X )] = g(x)p(x). 

x :p(x)>0 
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I In fact, for real constants a and b, we have
E [aX + bY ] = aE [X ] + bE [Y ].

I This is called the linearity of expectation.

I Can extend to more variables
E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn].

Additivity of expectation 

I If X and Y are distinct random variables, then 
E [X + Y ] = E [X ] + E [Y ]. 
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I This is called the linearity of expectation.
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I Can extend to more variables
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Additivity of expectation 

I If X and Y are distinct random variables, then 
E [X + Y ] = E [X ] + E [Y ]. 

I In fact, for real constants a and b, we have 
E [aX + bY ] = aE [X ] + bE [Y ]. 

I This is called the linearity of expectation. 

I Can extend to more variables 
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I The variance of X , denoted Var(X ), is defined by
Var(X ) = E [(X − µ)2].

I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

P
x :p(x)>0 g(x)p(x), we find that

Var[X ] =
X

x :p(x)>0

(x − µ)2p(x).

I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

I Very important alternate formula: Var[X ] = E [X 2]− (E [X ])2.

Defining variance in discrete case 

I Let X be a random variable with mean µ. 
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I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

P
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I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.
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I Very important alternate formula: Var[X ] = E [X 2]− (E [X ])2.

Defining variance in discrete case 

I Let X be a random variable with mean µ. 

I The variance of X , denoted Var(X ), is defined by 
Var(X ) = E [(X − µ)2]. 

I Taking g(x) = (x − µ)2 , and recalling that P 
E [g(X )] = x :p(x)>0 g(x)p(x), we find that X 

Var[X ] = (x − µ)2 p(x). 
x :p(x)>0 

I Variance is one way to measure the amount a random variable 
“varies” from its mean over successive trials. 

82



Defining variance in discrete case 

I Let X be a random variable with mean µ. 

I The variance of X , denoted Var(X ), is defined by 
Var(X ) = E [(X − µ)2]. 

I Taking g(x) = (x − µ)2 , and recalling that P 
E [g(X )] = x :p(x)>0 g(x)p(x), we find that X 
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I Variance is one way to measure the amount a random variable 
“varies” from its mean over successive trials. 
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I Also, Var[aX ] = a2Var[X ].

I Proof: Var[aX ] = E [a2X 2]− E [aX ]2 = a2E [X 2]− a2E [X ]2 =
a2Var[X ].

Identity 

I If Y = X + b, where b is constant, then Var[Y ] = Var[X ]. 
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I Proof: Var[aX ] = E [a2X 2]− E [aX ]2 = a2E [X 2]− a2E [X ]2 =
a2Var[X ].

Identity 

I If Y = X + b, where b is constant, then Var[Y ] = Var[X ]. 

I Also, Var[aX ] = a2Var[X ]. 
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Identity 

I If Y = X + b, where b is constant, then Var[Y ] = Var[X ]. 

I Also, Var[aX ] = a2Var[X ]. 

I Proof: Var[aX ] = E [a2X 2] − E [aX ]2 = a2E [X 2] − a2E [X ]2 = 
a2Var[X ]. 
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I Satisfies identity SD[aX ] = aSD[X ].

I Uses the same units as X itself.

I If we switch from feet to inches in our “height of randomly
chosen person” example, then X , E [X ], and SD[X ] each get
multiplied by 12, but Var[X ] gets multiplied by 144.

Standard deviation 

p 
I Write SD[X ] = Var[X ]. 
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Standard deviation 

p 
I Write SD[X ] = Var[X ]. 

I Satisfies identity SD[aX ] = aSD[X ]. 
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I Answer:
�n
k

�
/2n.

I What if coin has p probability to be heads?

I Answer:
�n
k

�
pk(1− p)n−k .

I Writing q = 1− p, we can write this as
�n
k

�
pkqn−k

I Can use binomial theorem to show probabilities sum to one:

I 1 = 1n = (p + q)n =
Pn

k=0

�n
k

�
pkqn−k .

I Number of heads is binomial random variable with
parameters (n, p).

Bernoulli random variables 

I Toss fair coin n times. (Tosses are independent.) What is the 
probability of k heads? 
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I Number of heads is binomial random variable with
parameters (n, p).

Bernoulli random variables 

I Toss fair coin n times. (Tosses are independent.) What is the 
probability of k heads? � � n I Answer: /2n . k 

I What if coin has p probability to be heads? � � n I Answer: pk (1 − p)n−k . k � � n k n−k I Writing q = 1 − p, we can write this as p q k 

I Can use binomial theorem to show probabilities sum to one: P � � n n k n−k I 1 = 1n = (p + q)n = p q . k=0 k 
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Bernoulli random variables 

I Toss fair coin n times. (Tosses are independent.) What is the 
probability of k heads? � � n I Answer: /2n . k 

I What if coin has p probability to be heads? � � n I Answer: pk (1 − p)n−k . k � � n k n−k I Writing q = 1 − p, we can write this as p q k 

I Can use binomial theorem to show probabilities sum to one: P � � n n k n−k I 1 = 1n = (p + q)n = p q . k=0 k 

I Number of heads is binomial random variable with 
parameters (n, p). 
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I Think of X as representing number of heads in n tosses of
coin that is heads with probability p.

I Write X =
Pn

j=1 Xj , where Xj is 1 if the jth coin is heads, 0
otherwise.

I In other words, Xj is the number of heads (zero or one) on the
jth toss.

I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
nX

j=1

E [Xj ] =
nX

j=1

p = np.

Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 
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I Conclude by additivity of expectation that

E [X ] =
nX

j=1

E [Xj ] =
nX

j=1

p = np.

Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 

I Think of X as representing number of heads in n tosses of 
coin that is heads with probability p. 
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I In other words, Xj is the number of heads (zero or one) on the
jth toss.

I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
nX

j=1

E [Xj ] =
nX

j=1

p = np.

Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 

I Think of X as representing number of heads in n tosses of 
coin that is heads with probability p. 

n I Write X = 
P 

Xj , where Xj is 1 if the jth coin is heads, 0 j=1 
otherwise. 
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I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
nX

j=1

E [Xj ] =
nX

j=1

p = np.

Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 

I Think of X as representing number of heads in n tosses of 
coin that is heads with probability p. 

n I Write X = 
P 

Xj , where Xj is 1 if the jth coin is heads, 0 j=1 
otherwise. 

I In other words, Xj is the number of heads (zero or one) on the 
jth toss. 
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I Conclude by additivity of expectation that

E [X ] =
nX

j=1

E [Xj ] =
nX

j=1

p = np.

Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 

I Think of X as representing number of heads in n tosses of 
coin that is heads with probability p. 

n I Write X = 
P 

Xj , where Xj is 1 if the jth coin is heads, 0 j=1 
otherwise. 

I In other words, Xj is the number of heads (zero or one) on the 
jth toss. 

I Note that E [Xj ] = p · 1 + (1 − p) · 0 = p for each j . 
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Decomposition approach to computing expectation 

I Let X be a binomial random variable with parameters (n, p). 
Here is one way to compute E [X ]. 

I Think of X as representing number of heads in n tosses of 
coin that is heads with probability p. 

n I Write X = 
P 

Xj , where Xj is 1 if the jth coin is heads, 0 j=1 
otherwise. 

I In other words, Xj is the number of heads (zero or one) on the 
jth toss. 

I Note that E [Xj ] = p · 1 + (1 − p) · 0 = p for each j . 

I Conclude by additivity of expectation that 

n n X X 
E [X ] = E [Xj ] = p = np. 
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I E [XiXj ] is p if i = j , p2 otherwise.

I
Pn

i=1

Pn
j=1 E [XiXj ] has n terms equal to p and (n − 1)n

terms equal to p2.

I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.

I Can show generally that if X1, . . . ,Xn independent then
Var[

Pn
j=1 Xj ] =

Pn
j=1Var[Xj ]

Compute variance with decomposition trick 

n I X = 
P 

Xj , so j=1 P P P P n n n n E [X 2] = E [ Xi Xj ] = E [Xi Xj ] i=1 j=1 i=1 j=1 
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I
Pn

i=1

Pn
j=1 E [XiXj ] has n terms equal to p and (n − 1)n

terms equal to p2.

I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.

I Can show generally that if X1, . . . ,Xn independent then
Var[

Pn
j=1 Xj ] =

Pn
j=1Var[Xj ]

Compute variance with decomposition trick 

n I X = 
P 

XPj , so P P P j=1 
n n n n E [X 2] = E [ Xi Xj ] = E [Xi Xj ] i=1 j=1 i=1 j=1 

I E [Xi Xj ] is p if i = j , p2 otherwise. 
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I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.

I Can show generally that if X1, . . . ,Xn independent then
Var[

Pn
j=1 Xj ] =

Pn
j=1Var[Xj ]

Compute variance with decomposition trick 

n I X = 
P 

Xj , so j=1 P P P P n n n n E [X 2] = E [ i=1 Xi j=1 Xj ] = i=1 j=1 E [Xi Xj ] 

I E [Xi Xj ] is p if i = j , p2 otherwise. 
n n I 

P P 
E [Xi Xj ] has n terms equal to p and (n − 1)n i=1 j=1 

terms equal to p2 . 
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I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.

I Can show generally that if X1, . . . ,Xn independent then
Var[

Pn
j=1 Xj ] =

Pn
j=1Var[Xj ]

Compute variance with decomposition trick 

n I X = 
P 

XPj , so P P P j=1 
n n n n E [X 2] = E [ i=1 Xi j=1 Xj ] = i=1 j=1 E [Xi Xj ] 

I E [Xi Xj ] is p if i = j , p2 otherwise. 
n n I 

P P 
E [Xi Xj ] has n terms equal to p and (n − 1)n i=1 j=1 

terms equal to p2 . 
2 2 I So E [X 2] = np + (n − 1)np = np + (np)2 − np . 
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I Can show generally that if X1, . . . ,Xn independent then
Var[

Pn
j=1 Xj ] =

Pn
j=1Var[Xj ]

Compute variance with decomposition trick 

P n I X = Xj , so j=1 P P P P n n n n E [X 2] = E [ Xi Xj ] = E [Xi Xj ] i=1 j=1 i=1 j=1 

I E [Xi Xj ] is p if i = j , p2 otherwise. P P n n I E [Xi Xj ] has n terms equal to p and (n − 1)n i=1 j=1 

terms equal to p2 . 
2 2 I So E [X 2] = np + (n − 1)np = np + (np)2 − np . 

I Thus 
2 Var[X ] = E [X 2] − E [X ]2 = np − np = np(1 − p) = npq. 
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Compute variance with decomposition trick 

n I X = 
P 

Xj , so j=1 P P P P n n n n E [X 2] = E [ Xi Xj ] = E [Xi Xj ] i=1 j=1 i=1 j=1 

I E [Xi Xj ] is p if i = j , p2 otherwise. 
n n I 

P P 
E [Xi Xj ] has n terms equal to p and (n − 1)n i=1 j=1 

terms equal to p2 . 
2 2 I So E [X 2] = np + (n − 1)np = np + (np)2 − np . 

I Thus 
2 Var[X ] = E [X 2] − E [X ]2 = np − np = np(1 − p) = npq. 

I Can show generally that if X1, . . . , Xn independent then P P n n Var[ Xj ] = Var[Xj ] j=1 j=1 
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I Suppose I have a coin that comes on heads with probability
λ/n and I toss it n times.

I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 
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I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 
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I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 
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I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 

I Answer: np = λ. 
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I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 

I Answer: np = λ. 

I Let k be some moderate sized number (say k = 4). What is 
the probability that I see exactly k heads? 
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I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 

I Answer: np = λ. 

I Let k be some moderate sized number (say k = 4). What is 
the probability that I see exactly k heads? 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 
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I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 

I Answer: np = λ. 

I Let k be some moderate sized number (say k = 4). What is 
the probability that I see exactly k heads? 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 

−λ I This is approximately λ
k 
(1 − p)n−k ≈ λ

k 
e . k! k! 
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=Bernoulli random variable with n large and np λ 

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3. 
Let n be a huge number, say n = 106 . 

I Suppose I have a coin that comes on heads with probability 
λ/n and I toss it n times. 

I How many heads do I expect to see? 

I Answer: np = λ. 

I Let k be some moderate sized number (say k = 4). What is 
the probability that I see exactly k heads? 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 

−λ I This is approximately λ
k 
(1 − p)n−k ≈ λ

k 
e . k! k! 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 
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I Clever computation tricks yield E [X ] = λ and Var[X ] = λ.

I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This also suggests E [X ] = np = λ and Var[X ] = npq ≈ λ.

Expectation and variance 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 
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I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This also suggests E [X ] = np = λ and Var[X ] = npq ≈ λ.

Expectation and variance 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 

I Clever computation tricks yield E [X ] = λ and Var[X ] = λ. 
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I This also suggests E [X ] = np = λ and Var[X ] = npq ≈ λ.

Expectation and variance 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 

I Clever computation tricks yield E [X ] = λ and Var[X ] = λ. 

I We think of a Poisson random variable as being (roughly) a 
Bernoulli (n, p) random variable with n very large and 
p = λ/n. 
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Expectation and variance 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 

I Clever computation tricks yield E [X ] = λ and Var[X ] = λ. 

I We think of a Poisson random variable as being (roughly) a 
Bernoulli (n, p) random variable with n very large and 
p = λ/n. 

I This also suggests E [X ] = np = λ and Var[X ] = npq ≈ λ. 
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I For each t > s ≥ 0, the value N(t)− N(s) describes the
number of events occurring in the time interval (s, t) and is
Poisson with rate (t − s)λ.

I The numbers of events occurring in disjoint intervals are
independent random variables.

I Probability to see zero events in first t time units is e−λt .

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Poisson point process 

I A Poisson point process is a random function N(t) called a 
Poisson process of rate λ. 
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I The numbers of events occurring in disjoint intervals are
independent random variables.

I Probability to see zero events in first t time units is e−λt .

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Poisson point process 

I A Poisson point process is a random function N(t) called a 
Poisson process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 
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I Probability to see zero events in first t time units is e−λt .

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Poisson point process 

I A Poisson point process is a random function N(t) called a 
Poisson process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 

I The numbers of events occurring in disjoint intervals are 
independent random variables. 
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Poisson point process 

I A Poisson point process is a random function N(t) called a 
Poisson process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 

I The numbers of events occurring in disjoint intervals are 
independent random variables. 

−λt I Probability to see zero events in first t time units is e . 

I Let Tk be time elapsed, since the previous event, until the kth 
event occurs. Then the Tk are independent random variables, 
each of which is exponential with parameter λ. 
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I Let X be such that the first heads is on the X th toss.

I Answer: P{X = k} = (1− p)k−1p = qk−1p, where q = 1− p
is tails probability.

I Say X is a geometric random variable with parameter p.

I Some cool calculation tricks show that E [X ] = 1/p.

I And Var[X ] = q/p2.

Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 
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I Answer: P{X = k} = (1− p)k−1p = qk−1p, where q = 1− p
is tails probability.

I Say X is a geometric random variable with parameter p.

I Some cool calculation tricks show that E [X ] = 1/p.

I And Var[X ] = q/p2.

Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the first heads is on the X th toss. 
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I Say X is a geometric random variable with parameter p.

I Some cool calculation tricks show that E [X ] = 1/p.

I And Var[X ] = q/p2.

Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the first heads is on the X th toss. 
k−1 I Answer: P{X = k} = (1 − p)k−1p = q p, where q = 1 − p 

is tails probability. 
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I Some cool calculation tricks show that E [X ] = 1/p.

I And Var[X ] = q/p2.

Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the first heads is on the X th toss. 
k−1 I Answer: P{X = k} = (1 − p)k−1p = q p, where q = 1 − p 

is tails probability. 

I Say X is a geometric random variable with parameter p. 
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I And Var[X ] = q/p2.

Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the first heads is on the X th toss. 
k−1 I Answer: P{X = k} = (1 − p)k−1p = q p, where q = 1 − p 

is tails probability. 

I Say X is a geometric random variable with parameter p. 

I Some cool calculation tricks show that E [X ] = 1/p. 
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Geometric random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the first heads is on the X th toss. 
k−1 I Answer: P{X = k} = (1 − p)k−1p = q p, where q = 1 − p 

is tails probability. 

I Say X is a geometric random variable with parameter p. 

I Some cool calculation tricks show that E [X ] = 1/p. 
2 I And Var[X ] = q/p . 
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I Let X be such that the rth heads is on the X th toss.

I Then P{X = k} =
�k−1
r−1

�
pr−1(1− p)k−rp.

I Call X negative binomial random variable with
parameters (r , p).

I So E [X ] = r/p.

I And Var[X ] = rq/p2.

Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 
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I Then P{X = k} =
�k−1
r−1

�
pr−1(1− p)k−rp.

I Call X negative binomial random variable with
parameters (r , p).

I So E [X ] = r/p.

I And Var[X ] = rq/p2.

Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the rth heads is on the X th toss. 
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I Call X negative binomial random variable with
parameters (r , p).

I So E [X ] = r/p.

I And Var[X ] = rq/p2.

Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the rth heads is on the X th toss. �k−1� 
I Then P{X = k} = pr −1(1 − p)k−r p. r −1 

135



I So E [X ] = r/p.

I And Var[X ] = rq/p2.

Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the rth heads is on the X th toss. 

I Then P{X = k} = 
�k−1� 

pr −1(1 − p)k−r p. r −1 

I Call X negative binomial random variable with 
parameters (r , p). 
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I And Var[X ] = rq/p2.

Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the rth heads is on the X th toss. 

I Then P{X = k} = 
�k−1� 

pr −1(1 − p)k−r p. r −1 

I Call X negative binomial random variable with 
parameters (r , p). 

I So E [X ] = r/p. 
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Negative binomial random variables 

I Consider an infinite sequence of independent tosses of a coin 
that comes up heads with probability p. 

I Let X be such that the rth heads is on the X th toss. 

I Then P{X = k} = 
�k−1� 

pr −1(1 − p)k−r p. r −1 

I Call X negative binomial random variable with 
parameters (r , p). 

I So E [X ] = r/p. 
2 I And Var[X ] = rq/p . 
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