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I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =
Z ∞

−∞

Z a−y

−∞
fX (x)fY (y)dxdy

=

Z ∞

−∞
FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) =

d
da

R∞
−∞ FX (a−y)fY (y)dy =

R∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

Summing two random variables 

I Say we have independent random variables X and Y and we 
know their density functions fX and fY . 
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I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

Summing two random variables 

I Say we have independent random variables X and Y and we 
know their density functions fX and fY . 
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P{X + Y ≤ a} = fX (x)fY (y)dxdy 
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I It is actually one of the most important abbreviations in
probability theory.

I Worth memorizing.

Independent identically distributed (i.i.d.) 

I The abbreviation i.i.d. means independent identically 
distributed. 
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I What is the probability density function of X + Y ?

I fX+Y (a) =
R∞
−∞ fX (a− y)fY (y)dy =

R 1
0 fX (a− y) which is

the length of [0, 1] ∩ [a− 1, a].

I That’s a when a ∈ [0, 1] and 2− a when a ∈ [1, 2] and 0
otherwise.

Summing i.i.d. uniform random variables 

I Suppose that X and Y are i.i.d. and uniform on [0, 1]. So 
fX = fY = 1 on [0, 1]. 
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Summing i.i.d. uniform random variables 

I Suppose that X and Y are i.i.d. and uniform on [0, 1]. So 
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I Sum Z of n independent copies of X?

I We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.

I So Z is negative binomial (n, p). So
P{Z = k} =

�k−1
n−1

�
pn−1(1− p)k−np.

Review: summing i.i.d. geometric random variables 

I A geometric random variable X with parameter p has 
P{X = k} = (1 − p)k−1p for k ≥ 1. 
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Review: summing i.i.d. geometric random variables 

I A geometric random variable X with parameter p has 
P{X = k} = (1 − p)k−1p for k ≥ 1. 

I Sum Z of n independent copies of X ? 

I We can interpret Z as time slot where nth head occurs in 
i.i.d. sequence of p-coin tosses. 

I So Z is negative binomial (n, p). So �k−1� 
P{Z = k} = pn−1(1 − p)k−np. n−1 
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I What is the law of Z =
Pn

i=1 Xi?

I We claimed in an earlier lecture that this was a gamma
distribution with parameters (λ, n).

I So fZ (y) =
λe−λy (λy)n−1

Γ(n) .

I We argued this point by taking limits of negative binomial
distributions. Can we check it directly?

I By induction, would suffice to show that a gamma (λ, 1) plus
an independent gamma (λ, n) is a gamma (λ, n + 1).

Summing i.i.d. exponential random variables 

I Suppose X1, . . . Xn are i.i.d. exponential random variables with 
−λx parameter λ. So fXi (x) = λe on [0, ∞) for all 1 ≤ i ≤ n. 
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Summing i.i.d. exponential random variables 
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I Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

I So fX (x) =
λe−λx (λx)s−1

Γ(s) and fY (y) =
λe−λy (λy)t−1

Γ(t) .

I Now fX+Y (a) =
R∞
−∞ fX (a− y)fY (y)dy .

I Up to constant factor (not depending on a) this isZ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

Z a

0
(a−y)s−1y t−1dy .

I Is
R a
0 (a− y)s−1y t−1dy (up to constant factor) a power of a?

I Yes: letting x = y/a, becomesR 1
0 (a− x/a)s−1(ax)t−1(adx) = as+t−1

R 1
0 (1− x)s−1x t−1dx .

I So fX+Y (a) is (constant times) e−λaas+t−1. Conclude that
X + Y is gamma (λ, s + t).

Summing independent gamma random variables 

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are 
independent. 

25



I So fX (x) =
λe−λx (λx)s−1

Γ(s) and fY (y) =
λe−λy (λy)t−1

Γ(t) .

I Now fX+Y (a) =
R∞
−∞ fX (a− y)fY (y)dy .

I Up to constant factor (not depending on a) this isZ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

Z a

0
(a−y)s−1y t−1dy .

I Is
R a
0 (a− y)s−1y t−1dy (up to constant factor) a power of a?

I Yes: letting x = y/a, becomesR 1
0 (a− x/a)s−1(ax)t−1(adx) = as+t−1

R 1
0 (1− x)s−1x t−1dx .

I So fX+Y (a) is (constant times) e−λaas+t−1. Conclude that
X + Y is gamma (λ, s + t).

Summing independent gamma random variables 

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are 
independent. 

I Intuitively, X is amount of time till we see s events, and Y is 
amount of subsequent time till we see t more events. 

26



I Now fX+Y (a) =
R∞
−∞ fX (a− y)fY (y)dy .

I Up to constant factor (not depending on a) this isZ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

Z a

0
(a−y)s−1y t−1dy .

I Is
R a
0 (a− y)s−1y t−1dy (up to constant factor) a power of a?

I Yes: letting x = y/a, becomesR 1
0 (a− x/a)s−1(ax)t−1(adx) = as+t−1

R 1
0 (1− x)s−1x t−1dx .

I So fX+Y (a) is (constant times) e−λaas+t−1. Conclude that
X + Y is gamma (λ, s + t).

Summing independent gamma random variables 

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are 
independent. 

I Intuitively, X is amount of time till we see s events, and Y is 
amount of subsequent time till we see t more events. 

λe−λx (λx)s−1 λe−λy (λy)t−1 
I So fX (x) = and fY (y) = . Γ(s) Γ(t) 

27



I Up to constant factor (not depending on a) this isZ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

Z a

0
(a−y)s−1y t−1dy .

I Is
R a
0 (a− y)s−1y t−1dy (up to constant factor) a power of a?

I Yes: letting x = y/a, becomesR 1
0 (a− x/a)s−1(ax)t−1(adx) = as+t−1

R 1
0 (1− x)s−1x t−1dx .

I So fX+Y (a) is (constant times) e−λaas+t−1. Conclude that
X + Y is gamma (λ, s + t).

Summing independent gamma random variables 

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are 
independent. 

I Intuitively, X is amount of time till we see s events, and Y is 
amount of subsequent time till we see t more events. 

λe−λx (λx)s−1 λe−λy (λy)t−1 
I So fX (x) = and fY (y) = . Γ(s) Γ(t) R ∞ I Now fX +Y (a) = fX (a − y)fY (y)dy . −∞ 

28



I Is
R a
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I Yes: letting x = y/a, becomesR 1
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0 0 R a I Is (a − y)s−1y t−1dy (up to constant factor) a power of a? 0 
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I So fX+Y (a) is (constant times) e−λaas+t−1. Conclude that
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Summing independent gamma random variables 
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I fX (x) =
1√
2πσ1

e
−x2

2σ2
1 and fY (y) =

1√
2πσ2

e
−y2

2σ2
2 .

I We just need to compute fX+Y (a) =
R∞
−∞ fX (a− y)fY (y)dy .

I We could compute this directly, or...

I If X , Y standard normal, then fX ,Y (x , y) =
1
2π e

−(x2−y2)/2.
Argue by rotational invariance that cos(θ)X + sin(θ)Y is
standard normal. Hence r cos(θ)X + r sin(θ)Y is Gaussian

with mean 0, variance r2 =
�
r cos(θ)

�2
+

�
r sin(θ)

�2
.

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

Pσ2N
i=1 Ai is roughly normal with variance σ2 when N large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ 21 , Y is normal with 
mean zero, variance σ 22 . 

33
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2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2 
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�2
+

�
r sin(θ)

�2
.

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

Pσ2N
i=1 Ai is roughly normal with variance σ2 when N large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2R ∞ I We just need to compute fX +Y (a) = fX (a − y)fY (y)dy . −∞ 
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I If X , Y standard normal, then fX ,Y (x , y) =
1
2π e

−(x2−y2)/2.
Argue by rotational invariance that cos(θ)X + sin(θ)Y is
standard normal. Hence r cos(θ)X + r sin(θ)Y is Gaussian

with mean 0, variance r2 =
�
r cos(θ)

�2
+

�
r sin(θ)

�2
.

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

Pσ2N
i=1 Ai is roughly normal with variance σ2 when N large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2R ∞ I We just need to compute fX +Y (a) = fX (a − y)fY (y)dy . −∞ 

I We could compute this directly, or... 
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I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

Pσ2N
i=1 Ai is roughly normal with variance σ2 when N large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2R ∞ I We just need to compute fX +Y (a) = fX (a − y)fY (y)dy . −∞ 

I We could compute this directly, or... 
1 −(x2−y2)/2 I If X , Y standard normal, then fX ,Y (x , y) = e . 2π 

Argue by rotational invariance that cos(θ)X + sin(θ)Y is 
standard normal. Hence r cos(θ)X + r sin(θ)Y is Gaussian � �2 � �2 
with mean 0, variance r2 = r cos(θ) + r sin(θ) . 
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I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

Pn
j=1 Xj is normal (

Pn
j=1 µj ,

Pn
j=1 σ

2
j ).

Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2R ∞ I We just need to compute fX +Y (a) = fX (a − y)fY (y)dy . −∞ 

I We could compute this directly, or... 
1 −(x2−y2)/2 I If X , Y standard normal, then fX ,Y (x , y) = e . 2π 

Argue by rotational invariance that cos(θ)X + sin(θ)Y is 
standard normal. Hence r cos(θ)X + r sin(θ)Y is Gaussian � �2 � �2 
with mean 0, variance r2 = r cos(θ) + r sin(θ) . 

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then Pσ2N 1√ Ai is roughly normal with variance σ2 when N large. i=1 N 
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Summing two normal variables 

I X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2 −x −y 
2σ2 2σ2 I fX (x) = √ 1 e 1 and fY (y) = √ 1 e 2 . 

2πσ1 2πσ2R ∞ I We just need to compute fX +Y (a) = fX (a − y)fY (y)dy . −∞ 

I We could compute this directly, or... 
1 −(x2−y2)/2 I If X , Y standard normal, then fX ,Y (x , y) = e . 2π 

Argue by rotational invariance that cos(θ)X + sin(θ)Y is 
standard normal. Hence r cos(θ)X + r sin(θ)Y is Gaussian � �2 � �2 
with mean 0, variance r2 = r cos(θ) + r sin(θ) . 

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then Pσ2N 1√ is roughly normal with variance σ2 when N large. i=1 Ai N 

I Generally: if independent random variables Xj are normal P P P n n n (µj , σ
2) then Xj is normal ( σ2). j j=1 j=1 µj , j=1 j 
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I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.

Other sums 

I Sum of an independent binomial (m, p) and binomial (n, p)? 
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I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.

Other sums 

I Sum of an independent binomial (m, p) and binomial (n, p)? 

I Yes, binomial (m + n, p). Can be seen from coin toss 
interpretation. 
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I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.

Other sums 

I Sum of an independent binomial (m, p) and binomial (n, p)? 

I Yes, binomial (m + n, p). Can be seen from coin toss 
interpretation. 

I Sum of independent Poisson λ1 and Poisson λ2? 
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Other sums 

I Sum of an independent binomial (m, p) and binomial (n, p)? 

I Yes, binomial (m + n, p). Can be seen from coin toss 
interpretation. 

I Sum of independent Poisson λ1 and Poisson λ2? 

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process 
interpretation. 
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