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know their density functions fx and fy.
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxiy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x+y < a} of
f(x,y) = fx(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy

:/_ Fx(a— )fy( )d .

» Differentiating both sides gives
fxrv(a) = & |70 Fx(a=y)fy(y)dy = [o fx(a—y)fy (y)dy.
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxiy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x+y < a} of
f(x,y) = fx(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy

:/_ Fx(a— )fy( )d .

» Differentiating both sides gives
ferv(a) = g5 [ o Fx(a=y)fy(y)dy = 72 fx(a=y)fy(y)dy.
» Latter formula makes some intuitive sense. We're integrating
over the set of x, y pairs that add up to a.
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Independent identically distributed (i.i.d.)

» The abbreviation i.i.d. means independent identically
distributed.

» It is actually one of the most important abbreviations in
probability theory.

» Worth memorizing.
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fy =1on [0, l].
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fy =1on [0, l].
» What is the probability density function of X 4+ Y7
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fy =1on [0, l].

» What is the probability density function of X + Y7

> ferv(a) = [ fx(a—y)fy(y)dy = [5 fx(a— y) which is
the length of [0,1] N [a —1,a].
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fx = fy =1on [0, l].

» What is the probability density function of X + Y7

> fery(a) = [° fx(a— y)fv(y)dy = [ fx(a—y) which is
the length of [0,1] N [a —1,a].

» That's a when a € [0,1] and 2 — a when a € [1,2] and 0
otherwise.
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Review: summing i.i.d. geometric random variables

» A geometric random variable X with parameter p has
P{X =k} = (1— p)k—ip for k > 1.
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Review: summing i.i.d. geometric random variables

» A geometric random variable X with parameter p has
P{X =k} = (1— p)k—ip for k > 1.
» Sum Z of n independent copies of X7

> We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.
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Review: summing i.i.d. geometric random variables

» A geometric random variable X with parameter p has
P{X =k} = (1— p)k—ip for k > 1.
» Sum Z of n independent copies of X7

> We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.

» SoZis negative binomial (n, p). So
P{Z =k} = (“)pm (1= p)<p.
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Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.
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Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

» What is the law of Z =37 ; X;?
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» Suppose Xi,...X, are i.i.d. exponential random variables with
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» What is the law of Z =37 ; X;?

> We claimed in an earlier lecture that this was a gamma
distribution with parameters (A, n).
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Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

» What is the law of Z =37 ; X;?

> We claimed in an earlier lecture that this was a gamma

distribution with parameters (A, n).

> So fz(y) = %

> We argued this point by taking limits of negative binomial
distributions. Can we check it directly?
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Summing i.i.d. exponential random variables

» Suppose Xi,...X, are i.i.d. exponential random variables with
parameter \. So fx.(x) = Ae ™ on [0,00) for all 1 < i < n.

» What is the law of Z =37 ; X;?
> We claimed in an earlier lecture that this was a gamma

distribution with parameters (A, n).

> So fz(y) = %

> We argued this point by taking limits of negative binomial
distributions. Can we check it directly?

» By induction, would suffice to show that a gamma (), 1) plus
an independent gamma (\, n) is a gamma (A, n+ 1).
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

e—Ax Xs—l e—% t—1
> So fi(x) = 22 FY and fy (y) = 22—
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

e—Ax Xs—l e—% t—1
> So fi(x) = 22 FY and fy (y) = 22—

> Now fxiy(a) = [7 fx(a—y)fy(y)dy.
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

> So fx(x) = 2 GP and fy(y) = 2

Now fxyy(a) = [% fx(a—y)fy(y)dy.
» Up to constant factor (not depending on a) this is

v

a a
/ e—)\(a—y)(a_y)s—le—)\yyt—ldy _ e—)\a/ (a_y)s—lyt—ldy.
0 0
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

e—Ax Xs—l e—% t—1
> So fi(x) = 22 FY and fy (y) = 22—

Now fxyy(a) = [% fx(a—y)fy(y)dy.
» Up to constant factor (not depending on a) this is

a a
/ e—A(a—y)(a_y)s—le—)\yyt—ldy _ e—)\a/ (a_y)s—lyt—ldy.
0 0

> Is fo a—y)*ty'~ldy (up to constant factor) a power of a?

v
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

e—Ax Xs—l e—% t—1
> So fi(x) = 22 FY and fy (y) = 22—

Now fxyy(a) = [% fx(a—y)fy(y)dy.
» Up to constant factor (not depending on a) this is

a a
/ e—A(a—y)(a_y)s—le—)\yyt—ldy _ e—)\a/ (a_y)s—lyt—ldy.
0 0

v

> Is fo a—y)*ty'~ldy (up to constant factor) a power of a?

> Yes: Iettmgx- y/a, becomes
fo —x/a)*"Y(ax)t"1(adx) = a5t 1f — x)5"Ixt"Ldx.
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Summing independent gamma random variables

» Say X is gamma (A,s), Y is gamma (\, t), and X and Y are
independent.

» Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

e—Ax Xs—l e—k t—1
> So fi(x) = 22 FY and fy (y) = 22—

Now fxyy(a) = [% fx(a—y)fy(y)dy.
» Up to constant factor (not depending on a) this is

a a
/ e—A(a—y)(a_y)s—le—)\yyt—ldy _ e—)\a/ (a_y)s—lyt—ldy.
0 0

> Is fo a—y)*ty'~ldy (up to constant factor) a power of a?

v

> Yes: Iettmgx- y/a, becomes
Jo(a—x/a)*H(ax)t"Y(adx) = a1 [i1(1 — x)*IxtLdx.

> So fxiy(a) is (constant tini¥s) e *3a5tt~1. Conclude that
X+ Y is gamma (A, s + t).



Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance 0'%.
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Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'%.
_2 _)2
2 1 202
> fx(x) = —L—e>1 and f = e
X( ) V2mo1 Y(Y) V2mop
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Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'%.

=2 —2
> fx(x) = ﬁglez”f and fy(y) = é@e%g.

> We just need to compute fx vy (a) = [*_ fx(a—y)fy(y)dy.
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Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'%.
_2 _)2
2 1 202
> fx(x) = —L—e>1 and f = e
X( ) V2mo1 Y(}/) V2mop

> We just need to compute fx vy (a) = [*_ fx(a—y)fy(y)dy.
> We could compute this directly, or...
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Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'%.

2 -2

fx(x) = \/%Uleﬁ and fy(y) = m@e%g.
We just need to compute fxty(a) = [* fx(a— y)fy(y)dy.

We could compute this directly, or..

If X, Y standard normal, then fx y(X y) = 5-e —(=y?)/2,
Argue by rotational invariance that cos(6)X + sm(9)Y is
standard normal. Hence rcos(6)X + rsin(f)Y is Gaussian

with mean 0, variance r? = (rcos(@))2 + (rsin(@))z.

vvvyYyy
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Summing two normal variables

» X is normal with mean zero, variance a%, Y is normal with

mean zero, variance O'%.

2 -2

fx(x) = \/%Uleﬁ and fy(y) = \/%026205'
We just need to compute fxty(a) = [* fx(a— y)fy(y)dy.

We could compute this directly, or..

If X, Y standard normal, then fx y(X y) = 5-e —(=y?)/2,
Argue by rotational invariance that cos(6)X —l— sm(9)Y is
standard normal. Hence rcos(6)X + rsin(f)Y is Gaussian

with mean 0, variance r? = (rcos(ﬁ))2 + (rsin(@))z.
» Or use fact that if A; € {—1,1} are i.i.d. coin tosses then
ﬁ Zi’lv A; is roughly normal with variance 02 when N large.

vvvyYyy
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Summing two normal variables

» X is normal with mean zero, variance J%, Y is normal with

mean zero, variance O'%.

2 -2

fx(x) = \/%Uleﬁ and fy(y) = \/%026205'
We just need to compute fxty(a) = [* fx(a— y)fy(y)dy.

We could compute this directly, or..

If X, Y standard normal, then fx y(x y) = 5-e —(=y?)/2,
Argue by rotational invariance that cos(6)X —l— sm(9)Y is
standard normal. Hence rcos(6)X + rsin(f)Y is Gaussian

with mean 0, variance r? = (rcos(ﬁ))2 + (rsin(@))z.
» Or use fact that if A; € {—1,1} are i.i.d. coin tosses then
% Z‘-TENA- is roughly normal with variance o® when N large.

vvvyYyy

> Generally if independent raggom variables X; are normal
(wj, 07 7) then 271 X is normal (37 1#1727_1 12)



» Sum of an independent binomial (m, p) and binomial (n, p)?
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» Sum of an independent binomial (m, p) and binomial (n, p)?

» Yes, binomial (m+ n, p). Can be seen from coin toss
interpretation.
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» Sum of an independent binomial (m, p) and binomial (n, p)?

» Yes, binomial (m+ n, p). Can be seen from coin toss
interpretation.

» Sum of independent Poisson A1 and Poisson A»?
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» Sum of an independent binomial (m, p) and binomial (n, p)?

» Yes, binomial (m+ n, p). Can be seen from coin toss
interpretation.

» Sum of independent Poisson A1 and Poisson A»?

» Yes, Poisson A1 + Ay. Can be seen from Poisson point process
interpretation.
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