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I Just write E [g(X )h(Y )] =
R∞
−∞

R∞
−∞ g(x)h(y)f (x , y)dxdy .

I Since f (x , y) = fX (x)fY (y) this factors asR∞
−∞ h(y)fY (y)dy

R∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].

A property of independence 

I If X and Y are independent then 
E [g(X )h(Y )] = E [g(X )]E [h(Y )]. 
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A property of independence 

I If X and Y are independent then 
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I Note: by definition Var(X ) = Cov(X ,X ).

I Covariance (like variance) can also written a different way.
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are
known, then µX and µY are just constants.

I Then

Cov(X ,Y ) = E [(X−µX )(Y−µY )] = E [XY−µXY−µYX+µXµY ] =

E [XY ]− µXE [Y ]− µYE [X ] + µXµY = E [XY ]− E [X ]E [Y ].

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

7



I Covariance (like variance) can also written a different way.
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are
known, then µX and µY are just constants.

I Then

Cov(X ,Y ) = E [(X−µX )(Y−µY )] = E [XY−µXY−µYX+µXµY ] =

E [XY ]− µXE [Y ]− µYE [X ] + µXµY = E [XY ]− E [X ]E [Y ].

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

8



I Then

Cov(X ,Y ) = E [(X−µX )(Y−µY )] = E [XY−µXY−µYX+µXµY ] =

E [XY ]− µXE [Y ]− µYE [X ] + µXµY = E [XY ]− E [X ]E [Y ].

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance (like variance) can also written a different way. 
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are 
known, then µX and µY are just constants. 

9



I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance (like variance) can also written a different way. 
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are 
known, then µX and µY are just constants. 

I Then 

Cov(X , Y ) = E [(X −µX )(Y −µY )] = E [XY −µX Y −µY X +µX µY ] = 

E [XY ] − µX E [Y ] − µY E [X ] + µX µY = E [XY ] − E [X ]E [Y ]. 

10



I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance (like variance) can also written a different way. 
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are 
known, then µX and µY are just constants. 

I Then 

Cov(X , Y ) = E [(X −µX )(Y −µY )] = E [XY −µX Y −µY X +µX µY ] = 

E [XY ] − µX E [Y ] − µY E [X ] + µX µY = E [XY ] − E [X ]E [Y ]. 

I Covariance formula E [XY ] − E [X ]E [Y ], or “expectation of 
product minus product of expectations” is frequently useful. 

11



Defining covariance and correlation 
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Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 
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I Cov(X ,Y ) = Cov(Y ,X )

I Cov(X ,X ) = Var(X )

I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
mX
i=1

aiXi ,

nX
j=1

bjYj) =
mX
i=1

nX
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Using Cov(X , Y ) = E [XY ] − E [X ]E [Y ] as a definition, 
certain facts are immediate. 
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I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).
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I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).
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I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Using Cov(X , Y ) = E [XY ] − E [X ]E [Y ] as a definition, 
certain facts are immediate. 

I Cov(X , Y ) = Cov(Y , X ) 
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I Cov(aX , Y ) = aCov(X , Y ). 
I Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 
I General statement of bilinearity of covariance: 

m n m n X X XX 
Cov( ai Xi , bj Yj ) = ai bj Cov(Xi , Yj ). 

i=1 j=1 i=1 j=1 
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Basic covariance facts 

I Using Cov(X , Y ) = E [XY ] − E [X ]E [Y ] as a definition, 
certain facts are immediate. 

I Cov(X , Y ) = Cov(Y , X ) 
I Cov(X , X ) = Var(X ) 
I Cov(aX , Y ) = aCov(X , Y ). 
I Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 
I General statement of bilinearity of covariance: 

m n m n X X XX 
Cov( ai Xi , bj Yj ) = ai bj Cov(Xi , Yj ). 

i=1 j=1 i=1 j=1 

I Special case: 

n n X X X 
Var( Xi ) = Var(Xi ) + 2 Cov(Xi , Xj ). 
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I Correlation of X and Y defined by

ρ(X ,Y ) :=
Cov(X ,Y )p
Var(X )Var(Y )

.

I Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.

I Why is that? Something to do with E [(X + Y )2] ≥ 0 and
E [(X − Y )2] ≥ 0?

I If a and b are constants and a > 0 then ρ(aX + b,X ) = 1.

I If a and b are constants and a < 0 then ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 
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I If a and b are constants and a < 0 then ρ(aX + b,X ) = −1.
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I Are independent random variables X and Y always
uncorrelated?

I Yes, assuming variances are finite (so that correlation is
defined).

I Are uncorrelated random variables always independent?

I No. Uncorrelated just means E [(X − E [X ])(Y − E [Y ])] = 0,
i.e., the outcomes where (X − E [X ])(Y − E [Y ]) is positive
(the upper right and lower left quadrants, if axes are drawn
centered at (E [X ],E [Y ])) balance out the outcomes where
this quantity is negative (upper left and lower right
quadrants). This is a much weaker statement than
independence.

Important point 

I Say X and Y are uncorrelated when ρ(X , Y ) = 0. 
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I Compute Cov(X1 + X2 + X3,X2 + X3 + X4).

I Compute the correlation coefficient
ρ(X1 + X2 + X3,X2 + X3 + X4).

I Can we generalize this example?

I What is variance of number of people who get their own hat
in the hat problem?

I Define Xi to be 1 if ith person gets own hat, zero otherwise.

I Recall formula
Var(

Pn
i=1 Xi ) =

Pn
i=1Var(Xi ) + 2

P
(i ,j):i<j Cov(Xi ,Xj).

I Reduces problem to computing Cov(Xi ,Xj) (for i 6= j) and
Var(Xi ).

Examples 

I Suppose that X1, . . . , Xn are i.i.d. random variables with 
variance 1. For example, maybe each Xj takes values ±1 
according to a fair coin toss. 
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I Compute the correlation coefficient
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I What is variance of number of people who get their own hat
in the hat problem?

I Define Xi to be 1 if ith person gets own hat, zero otherwise.
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I Recall formula
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I Reduces problem to computing Cov(Xi ,Xj) (for i 6= j) and
Var(Xi ).

Examples 

I Suppose that X1, . . . , Xn are i.i.d. random variables with 
variance 1. For example, maybe each Xj takes values ±1 
according to a fair coin toss. 

I Compute Cov(X1 + X2 + X3, X2 + X3 + X4). 

I Compute the correlation coefficient 
ρ(X1 + X2 + X3, X2 + X3 + X4). 

I Can we generalize this example? 

I What is variance of number of people who get their own hat 
in the hat problem? 

I Define Xi to be 1 if ith person gets own hat, zero otherwise. 

I Recall formulaP P P n n Var( Xi ) = Var(Xi ) + 2 Cov(Xi , Xj ). i=1 i=1 (i ,j):i<j 
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Examples 

I Suppose that X1, . . . , Xn are i.i.d. random variables with 
variance 1. For example, maybe each Xj takes values ±1 
according to a fair coin toss. 

I Compute Cov(X1 + X2 + X3, X2 + X3 + X4). 

I Compute the correlation coefficient 
ρ(X1 + X2 + X3, X2 + X3 + X4). 

I Can we generalize this example? 

I What is variance of number of people who get their own hat 
in the hat problem? 

I Define Xi to be 1 if ith person gets own hat, zero otherwise. 

I Recall formulaP P P n n Var( Xi ) = Var(Xi ) + 2 Cov(Xi , Xj ). i=1 i=1 (i ,j):i<j 

I Reduces problem to computing Cov(Xi , Xj ) (for i 6= j) and 
Var(Xi ). 

39



Outline 

Covariance and correlation 

Paradoxes: getting ready to think about conditional expectation 
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I At the end of this period, a (biased) coin will be tossed.
Banker will be assigned to hell forever with probability 1/n
and heaven forever with probability 1− 1/n.

I After 10 days, banker reasons, “If I wait another day I reduce
my odds of being here forever from 1/10 to 1/11. That’s a
reduction of 1/110. A 1/110 chance at infinity has infinite
value. Worth waiting one more day.”

I Repeats this reasoning every day, stays in hell forever.

I Standard punch line: this is actually what banker deserved.

I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.

Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 
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I After 10 days, banker reasons, “If I wait another day I reduce
my odds of being here forever from 1/10 to 1/11. That’s a
reduction of 1/110. A 1/110 chance at infinity has infinite
value. Worth waiting one more day.”

I Repeats this reasoning every day, stays in hell forever.

I Standard punch line: this is actually what banker deserved.

I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.

Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 

I At the end of this period, a (biased) coin will be tossed. 
Banker will be assigned to hell forever with probability 1/n 
and heaven forever with probability 1 − 1/n. 
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I Repeats this reasoning every day, stays in hell forever.

I Standard punch line: this is actually what banker deserved.

I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.

Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 

I At the end of this period, a (biased) coin will be tossed. 
Banker will be assigned to hell forever with probability 1/n 
and heaven forever with probability 1 − 1/n. 

I After 10 days, banker reasons, “If I wait another day I reduce 
my odds of being here forever from 1/10 to 1/11. That’s a 
reduction of 1/110. A 1/110 chance at infinity has infinite 
value. Worth waiting one more day.” 
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I Standard punch line: this is actually what banker deserved.

I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.

Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 

I At the end of this period, a (biased) coin will be tossed. 
Banker will be assigned to hell forever with probability 1/n 
and heaven forever with probability 1 − 1/n. 

I After 10 days, banker reasons, “If I wait another day I reduce 
my odds of being here forever from 1/10 to 1/11. That’s a 
reduction of 1/110. A 1/110 chance at infinity has infinite 
value. Worth waiting one more day.” 

I Repeats this reasoning every day, stays in hell forever. 
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I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.

Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 

I At the end of this period, a (biased) coin will be tossed. 
Banker will be assigned to hell forever with probability 1/n 
and heaven forever with probability 1 − 1/n. 

I After 10 days, banker reasons, “If I wait another day I reduce 
my odds of being here forever from 1/10 to 1/11. That’s a 
reduction of 1/110. A 1/110 chance at infinity has infinite 
value. Worth waiting one more day.” 

I Repeats this reasoning every day, stays in hell forever. 

I Standard punch line: this is actually what banker deserved. 
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Famous paradox 

I Certain corrupt and amoral banker dies, instructed to spend 
some number n (of banker’s choosing) days in hell. 

I At the end of this period, a (biased) coin will be tossed. 
Banker will be assigned to hell forever with probability 1/n 
and heaven forever with probability 1 − 1/n. 

I After 10 days, banker reasons, “If I wait another day I reduce 
my odds of being here forever from 1/10 to 1/11. That’s a 
reduction of 1/110. A 1/110 chance at infinity has infinite 
value. Worth waiting one more day.” 

I Repeats this reasoning every day, stays in hell forever. 

I Standard punch line: this is actually what banker deserved. 

I Fairly dark as math humor goes (and no offense intended to 
anyone...) but dilemma is interesting. 47



I Variant without probability: Stay in hell for n (of your
choice) days, and thereafter on days that are multiples of 2n.

I When you agree to stay in hell kth day, you get (in exchange)
heaven for all odd multiples of 2k−1. Seems a good bargain...

I Another variant: infinitely many identical money sacks with
labels 1, 2, 3, . . . I have sack 1. You have all others.

I You offer me a deal. I give you sack 1, you give me sacks 2
and 3. I give you sack 2 and you give me sacks 4 and 5. On
the nth stage, I give you sack n and you give me sacks 2n and
2n + 1. Continue until I say stop.

I Lets me get arbitrarily rich. But if I go on forever, I return
every sack given to me. If nth sack confers right to spend nth
day in heaven, leads to hell-forever paradox.

I In both stories, make infinitely many good trades and end up
with less than I started with. “Paradox” is existence of 2-to-1
map from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}.

I Paradox: decisions seem sound individually but together yield 
worst possible outcome. Why? Can we demystify this? 
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I When you agree to stay in hell kth day, you get (in exchange)
heaven for all odd multiples of 2k−1. Seems a good bargain...

I Another variant: infinitely many identical money sacks with
labels 1, 2, 3, . . . I have sack 1. You have all others.

I You offer me a deal. I give you sack 1, you give me sacks 2
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I Another variant: infinitely many identical money sacks with
labels 1, 2, 3, . . . I have sack 1. You have all others.
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I When you agree to stay in hell kth day, you get (in exchange) 
heaven for all odd multiples of 2k−1 . Seems a good bargain... 
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I You offer me a deal. I give you sack 1, you give me sacks 2
and 3. I give you sack 2 and you give me sacks 4 and 5. On
the nth stage, I give you sack n and you give me sacks 2n and
2n + 1. Continue until I say stop.

I Lets me get arbitrarily rich. But if I go on forever, I return
every sack given to me. If nth sack confers right to spend nth
day in heaven, leads to hell-forever paradox.

I In both stories, make infinitely many good trades and end up
with less than I started with. “Paradox” is existence of 2-to-1
map from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}.

I Paradox: decisions seem sound individually but together yield 
worst possible outcome. Why? Can we demystify this? 

I Variant without probability: Stay in hell for n (of your 
choice) days, and thereafter on days that are multiples of 2n . 

I When you agree to stay in hell kth day, you get (in exchange) 
heaven for all odd multiples of 2k−1 . Seems a good bargain... 

I Another variant: infinitely many identical money sacks with 
labels 1, 2, 3, . . . I have sack 1. You have all others. 
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I Lets me get arbitrarily rich. But if I go on forever, I return
every sack given to me. If nth sack confers right to spend nth
day in heaven, leads to hell-forever paradox.

I In both stories, make infinitely many good trades and end up
with less than I started with. “Paradox” is existence of 2-to-1
map from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}.

I Paradox: decisions seem sound individually but together yield 
worst possible outcome. Why? Can we demystify this? 

I Variant without probability: Stay in hell for n (of your 
choice) days, and thereafter on days that are multiples of 2n . 

I When you agree to stay in hell kth day, you get (in exchange) 
heaven for all odd multiples of 2k−1 . Seems a good bargain... 

I Another variant: infinitely many identical money sacks with 
labels 1, 2, 3, . . . I have sack 1. You have all others. 

I You offer me a deal. I give you sack 1, you give me sacks 2 
and 3. I give you sack 2 and you give me sacks 4 and 5. On 
the nth stage, I give you sack n and you give me sacks 2n and 
2n + 1. Continue until I say stop. 
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I In both stories, make infinitely many good trades and end up
with less than I started with. “Paradox” is existence of 2-to-1
map from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}.

I Paradox: decisions seem sound individually but together yield 
worst possible outcome. Why? Can we demystify this? 

I Variant without probability: Stay in hell for n (of your 
choice) days, and thereafter on days that are multiples of 2n . 

I When you agree to stay in hell kth day, you get (in exchange) 
heaven for all odd multiples of 2k−1 . Seems a good bargain... 

I Another variant: infinitely many identical money sacks with 
labels 1, 2, 3, . . . I have sack 1. You have all others. 

I You offer me a deal. I give you sack 1, you give me sacks 2 
and 3. I give you sack 2 and you give me sacks 4 and 5. On 
the nth stage, I give you sack n and you give me sacks 2n and 
2n + 1. Continue until I say stop. 

I Lets me get arbitrarily rich. But if I go on forever, I return 
every sack given to me. If nth sack confers right to spend nth 
day in heaven, leads to hell-forever paradox. 
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I Paradox: decisions seem sound individually but together yield 
worst possible outcome. Why? Can we demystify this? 

I Variant without probability: Stay in hell for n (of your 
choice) days, and thereafter on days that are multiples of 2n . 

I When you agree to stay in hell kth day, you get (in exchange) 
heaven for all odd multiples of 2k−1 . Seems a good bargain... 

I Another variant: infinitely many identical money sacks with 
labels 1, 2, 3, . . . I have sack 1. You have all others. 

I You offer me a deal. I give you sack 1, you give me sacks 2 
and 3. I give you sack 2 and you give me sacks 4 and 5. On 
the nth stage, I give you sack n and you give me sacks 2n and 
2n + 1. Continue until I say stop. 

I Lets me get arbitrarily rich. But if I go on forever, I return 
every sack given to me. If nth sack confers right to spend nth 
day in heaven, leads to hell-forever paradox. 

I In both stories, make infinitely many good trades and end up 
with less than I started with. “Paradox” is existence of 2-to-1 
map from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}. 
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I Precise details not important, but let’s say you have 5n in the
nth pile. Important thing is that pile size is increasing
exponentially in n.

I Banker proposes to transfer a fraction (say 2/3) of each pile
to the pile on its left and remainder to the pile on its right.
Do this simultaneously for all piles.

I Every pile is bigger after transfer (and this can be true even if
banker takes a portion of each pile as a fee).

I Banker seemed to make you richer (every pile got bigger) but
really just reshuffled your infinite wealth.

Money pile paradox 

I You have an infinite collection of money piles with labels 
0, 1, 2, . . . from left to right. 

55



I Banker proposes to transfer a fraction (say 2/3) of each pile
to the pile on its left and remainder to the pile on its right.
Do this simultaneously for all piles.

I Every pile is bigger after transfer (and this can be true even if
banker takes a portion of each pile as a fee).

I Banker seemed to make you richer (every pile got bigger) but
really just reshuffled your infinite wealth.

Money pile paradox 

I You have an infinite collection of money piles with labels 
0, 1, 2, . . . from left to right. 

I Precise details not important, but let’s say you have 5n in the 
nth pile. Important thing is that pile size is increasing 
exponentially in n. 
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I Every pile is bigger after transfer (and this can be true even if
banker takes a portion of each pile as a fee).

I Banker seemed to make you richer (every pile got bigger) but
really just reshuffled your infinite wealth.

Money pile paradox 

I You have an infinite collection of money piles with labels 
0, 1, 2, . . . from left to right. 

I Precise details not important, but let’s say you have 5n in the 
nth pile. Important thing is that pile size is increasing 
exponentially in n. 

I Banker proposes to transfer a fraction (say 2/3) of each pile 
to the pile on its left and remainder to the pile on its right. 
Do this simultaneously for all piles. 
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I Banker seemed to make you richer (every pile got bigger) but
really just reshuffled your infinite wealth.

Money pile paradox 

I You have an infinite collection of money piles with labels 
0, 1, 2, . . . from left to right. 

I Precise details not important, but let’s say you have 5n in the 
nth pile. Important thing is that pile size is increasing 
exponentially in n. 

I Banker proposes to transfer a fraction (say 2/3) of each pile 
to the pile on its left and remainder to the pile on its right. 
Do this simultaneously for all piles. 

I Every pile is bigger after transfer (and this can be true even if 
banker takes a portion of each pile as a fee). 
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Money pile paradox 

I You have an infinite collection of money piles with labels 
0, 1, 2, . . . from left to right. 

I Precise details not important, but let’s say you have 5n in the 
nth pile. Important thing is that pile size is increasing 
exponentially in n. 

I Banker proposes to transfer a fraction (say 2/3) of each pile 
to the pile on its left and remainder to the pile on its right. 
Do this simultaneously for all piles. 

I Every pile is bigger after transfer (and this can be true even if 
banker takes a portion of each pile as a fee). 

I Banker seemed to make you richer (every pile got bigger) but 
really just reshuffled your infinite wealth. 
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I You choose an envelope and, after seeing contents, are
allowed to choose whether to keep it or switch. (Maybe you
have to pay a dollar to switch.)

I Maximizing conditional expectation, it seems it’s always
better to switch. But if you always switch, why not just
choose second-choice envelope first and avoid switching fee?

I Kind of a disguised version of money pile paradox. But more
subtle. One has to replace “jth pile of money” with
“restriction of expectation sum to scenario that first chosen
envelop has 10j”. Switching indeed makes each pile bigger.

I However, “Higher expectation given amount in first envelope”
may not be right notion of “better.” If S is payout with
switching, T is payout without switching, then S has same
law as T − 1. In that sense S is worse.

Two envelope paradox 

I X is geometric with parameter 1/2. One envelope has 10X 

dollars, one has 10X −1 dollars. Envelopes shuffled. 
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I Maximizing conditional expectation, it seems it’s always
better to switch. But if you always switch, why not just
choose second-choice envelope first and avoid switching fee?

I Kind of a disguised version of money pile paradox. But more
subtle. One has to replace “jth pile of money” with
“restriction of expectation sum to scenario that first chosen
envelop has 10j”. Switching indeed makes each pile bigger.

I However, “Higher expectation given amount in first envelope”
may not be right notion of “better.” If S is payout with
switching, T is payout without switching, then S has same
law as T − 1. In that sense S is worse.

Two envelope paradox 

I X is geometric with parameter 1/2. One envelope has 10X 

dollars, one has 10X −1 dollars. Envelopes shuffled. 
I You choose an envelope and, after seeing contents, are 

allowed to choose whether to keep it or switch. (Maybe you 
have to pay a dollar to switch.) 
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I Kind of a disguised version of money pile paradox. But more
subtle. One has to replace “jth pile of money” with
“restriction of expectation sum to scenario that first chosen
envelop has 10j”. Switching indeed makes each pile bigger.

I However, “Higher expectation given amount in first envelope”
may not be right notion of “better.” If S is payout with
switching, T is payout without switching, then S has same
law as T − 1. In that sense S is worse.

Two envelope paradox 

I X is geometric with parameter 1/2. One envelope has 10X 

dollars, one has 10X −1 dollars. Envelopes shuffled. 
I You choose an envelope and, after seeing contents, are 

allowed to choose whether to keep it or switch. (Maybe you 
have to pay a dollar to switch.) 

I Maximizing conditional expectation, it seems it’s always 
better to switch. But if you always switch, why not just 
choose second-choice envelope first and avoid switching fee? 
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I However, “Higher expectation given amount in first envelope”
may not be right notion of “better.” If S is payout with
switching, T is payout without switching, then S has same
law as T − 1. In that sense S is worse.

Two envelope paradox 

I X is geometric with parameter 1/2. One envelope has 10X 

dollars, one has 10X −1 dollars. Envelopes shuffled. 
I You choose an envelope and, after seeing contents, are 

allowed to choose whether to keep it or switch. (Maybe you 
have to pay a dollar to switch.) 

I Maximizing conditional expectation, it seems it’s always 
better to switch. But if you always switch, why not just 
choose second-choice envelope first and avoid switching fee? 

I Kind of a disguised version of money pile paradox. But more 
subtle. One has to replace “jth pile of money” with 
“restriction of expectation sum to scenario that first chosen 
envelop has 10j ”. Switching indeed makes each pile bigger. 
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Two envelope paradox 

I X is geometric with parameter 1/2. One envelope has 10X 

dollars, one has 10X −1 dollars. Envelopes shuffled. 
I You choose an envelope and, after seeing contents, are 

allowed to choose whether to keep it or switch. (Maybe you 
have to pay a dollar to switch.) 

I Maximizing conditional expectation, it seems it’s always 
better to switch. But if you always switch, why not just 
choose second-choice envelope first and avoid switching fee? 

I Kind of a disguised version of money pile paradox. But more 
subtle. One has to replace “jth pile of money” with 
“restriction of expectation sum to scenario that first chosen 
envelop has 10j ”. Switching indeed makes each pile bigger. 

I However, “Higher expectation given amount in first envelope” 
may not be right notion of “better.” If S is payout with 
switching, T is payout without switching, then S has same 
law as T − 1. In that sense S is worse. 
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Two envelope paradox 

($1 with prob. 1/4) ∼ $.25

($10 with prob. 3/8) ∼ $3.75

($100 with prob. 3/16) ∼ $18.75

($1000 with prob. 3/32) ∼ $93.75

($10000 with prob. 3/64) ∼ $468.75

VALUE OF ENVELOPE ONE VALUE OF ENVELOPE TWO

($1 with prob. 1/4) ∼ $.25

($10 with prob. 3/8) ∼ $3.75

($100 with prob. 3/16) ∼ $18.75

($1000 with prob. 3/32) ∼ $93.75

($10000 with prob. 3/64) ∼ $468.75

$12.50

$6.25

$2.50

$1.25

$.25

$312.50

$31.25

$62.50

$156.25
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I Beware unbounded utility functions.

I They can lead to strange conclusions, sometimes related to
“reshuffling infinite (actual or expected) wealth to create
more” paradoxes.

I Paradoxes can arise even when total transaction is finite with
probability one (as in envelope problem).

Moral 

I Beware infinite expectations. 
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I They can lead to strange conclusions, sometimes related to
“reshuffling infinite (actual or expected) wealth to create
more” paradoxes.

I Paradoxes can arise even when total transaction is finite with
probability one (as in envelope problem).

Moral 

I Beware infinite expectations. 

I Beware unbounded utility functions. 
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I Paradoxes can arise even when total transaction is finite with
probability one (as in envelope problem).

Moral 

I Beware infinite expectations. 

I Beware unbounded utility functions. 

I They can lead to strange conclusions, sometimes related to 
“reshuffling infinite (actual or expected) wealth to create 
more” paradoxes. 
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Moral 

I Beware infinite expectations. 

I Beware unbounded utility functions. 

I They can lead to strange conclusions, sometimes related to 
“reshuffling infinite (actual or expected) wealth to create 
more” paradoxes. 

I Paradoxes can arise even when total transaction is finite with 
probability one (as in envelope problem). 
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